
Parallel Flowshop in YewPar

Ignas Knizikevičius1, Phil Trinder1, Blair Archibald�1, and Jinghua Yan2

1 School of Computing Science, University of Glasgow, Scotland
{phil.trinder, blair.archibald}@glasgow.ac.uk

2 School of Computing, University of Utah, United States of America
jhyan@cs.utah.edu

Abstract. Parallelism may reduce the time to find exact solutions for
many Operations Research (OR) problems, but parallelising combinatorial
search is extremely challenging. YewPar is a new combinatorial search
framework designed to allow domain specialists to benefit from parallelism
by reusing sophisticated parallel search patterns.
This paper shows (1) that it is low effort to encode and parallelise a
typical OR problem (Flowshop Scheduling FSP) in YewPar even for
scalable clusters; (2) that the YewPar library makes it extremely easy to
exploit three alternate FSP parallelisations; (3) that the YewPar FSP
implementations are valid, and have sequential performance comparable
with a published algorithm; and (4) provides a systematic performance
evaluation of the three parallel FSP versions on 10 standard FSP instances
with up to 240 workers on a Beowulf cluster.

1 Introduction

Flowshop Scheduling (FSP) is a classic OR problem: n jobs are to be processed
on m machines with the processing time of any job on any machine specified.
The goal is to find a sequence of jobs that has the least makespan, or time to
complete the jobs. Optimal FSP solutions can be found by exploring the entire
search space, but this is computationally expensive. Approximation strategies
reduce runtime by exploring only part of the search space and, despite being
unable to guarantee optimality, are commonly used.

The runtimes of exact combinatorial search problems like FSP can be reduced
(1) by using Branch and Bound (B&B) techniques that dynamically explore the
search space and discard (prune) branches that cannot contain solutions; and
(2) by exploiting parallelism. However parallelising exact combinatorial search
is extremely challenging due to the huge and highly irregular search trees, the
need to preserve search order heuristics, and pruning that dynamically alters the
workload.

YewPar [5] is a new combinatorial search framework designed to allow domain
specialists to benefit from parallelism by reusing sophisticated parallel search
patterns (subsection 2.1). As a performance baseline we develop a direct exact
sequential FSP solver in C++.

ar
X

iv
:2

20
7.

06
90

2v
2

 [
cs

.D
C

]
 2

1
Ju

l 2
02

2

2 Knizikevičius et al.

The research contributions of this paper are as follows, and the key results
are summarised in section 6.

1. We show that minimal effort is required to encode a typical
OR problem (FSP) in YewPar. The direct and sequential YewPar solvers
implement a standard FSP algorithm, and both require around 390 source lines of
code (SLOC), much of which is shared. Although a simple Travelling Salesperson
is reported in [3], FSP is the first non-trivial OR application implemented using
YewPar (section 3).

2. We show that YewPar makes it extremely easy to experiment
with three sophisticated search parallelisations on shared and dis-
tributed memory architectures. An alternate parallelisation simply entails
a few lines of code that configure an appropriate YewPar skeleton, and the
selection of suitable parameters. While StackStealing [10] and DepthBounded
search coordinations [15] have been widely used, we report the first use of Budget
parallel search coordination for FSP (subsection 4.4).

3. We validate the solvers using 100+ standard instances; and base-
line the sequential performance against the recent LL solver [10] showing
comparable performance. YewPar is on average 5% faster than LL, but 9% slower
than the direct FSP solver (section 4).

4. We systematically measure the performance of the three parallel
FSP searches on 10 Taillard instances with up to 240 workers on a
Beowulf cluster. We show that YewPar increases the number of instances that
can be practically solved, e.g. one instance runtime falls from 2.4 days to 16
minutes. Good absolute speedups (up to 297×) are achieved for large instances
(sequential runtimes between 4 and 58 hours). Of the three parallelisations Budget
delivers the best performance, with mean speedup over 6 large Taillard instances
of 246× (section 5).

2 Background

Job-Shop scheduling optimises the scheduling of n jobs onto m machines while
maintaining job precedence constraints. In Flowshop scheduling the precedence
constraints are identical for all jobs and the goal is to minimise the makespan—the
time to complete all jobs. There are a variety of solution techniques [2] and here
we seek exact solutions that both identify a solution and prove that no better
solution exists. One exact technique uses a branch-and-bound search of the tree
of all possible solutions, with a bounding function that eliminates sub-trees that
cannot contain an improved solution. Each search tree node represents a (partial)
schedule, and the tree is never fully manifest in memory: it is generated during
the search.

Parallelising the search can reduce runtimes by concurrently exploring sub-
trees. While there is huge scope for parallelism, parallel tree search is far from
trivial. We need to determine how and when a tree should be split; subtree sizes
vary hugely and work must be balanced between cores; global knowledge, e.g. new
bounds, must be shared. The parallel coordination must be added to the search

Parallel Flowshop in YewPar 3

code, and is often so intrusive that only a single parallelisation is developed.
Moreover parallelisation typically targets the less-challenging shared-memory
architectures, but this limits scalability to around 100 cores.

2.1 YewPar

YewPar is the “the first general purpose scalable parallel framework for exact
combinatorial search” [5] and is designed to make it easier to parallelise search
applications. YewPar offers reusable generic parallel search patterns (algorithmic
skeletons), that only require user parameterisation with sequential functions.
It has been used to parallelise 7 different search applications using 3 different
parallelism techniques [5]. Other general search frameworks include TaskWork [13]
and MaLLBa [1], but these support only a single search coordination.

To separate search tree generation from parallelism (tree exploration) a
YewPar user specifies their search application as a Lazy Node Generator (LNG).
A LNG specifies how, for a given node, a heuristically ordered list of child nodes
is created. Lazy generation minimises memory overheads and avoids generating
subtrees that are pruned.

2.2 Search Coordinations

Search coordinations specify parallel work generation and distribution strategies.
YewPar currently supports four well-known search coordinations as follows.
Detailed specifications of the YewPar search coordinations, including a parallel
operational semantics for each, are available in [5].

Sequential performs a depth-first search from the root of the search tree. It
executes in a single thread and is useful for performance baselining and debugging
LNG implementations.

Depth-Bounded creates a new task for any search tree node higher than
a user-specified cut-off depth dcutoff with tasks shared using locally-biased dis-
tributed random work-stealing. The intuition is that tasks created near the root
of the search tree will undertake significant searches, i.e. have long runtimes.
Selecting a depth enables the user to control the number of tasks created.

Budget creates new tasks to be stolen every time a search task executes
budget back-tracks. The intuition is that search tasks that have a long runtime
can usefully spawn other search tasks to help (the task has not instantly been
pruned for example). Selecting a budget enables the user to control the size of
the search tasks.

Budget is similar in spirit to restarting searches, but instead of starting the
search afresh after a timeout (a budget), it creates new tasks that continue the
search from the (top-of the) current subtree. Unlike a restart these new tasks do
not necessarily execute immediately, as they may be queued waiting for a worker
to become available. Parallelising searches using restarts is an ongoing research
focus, e.g. [4].

Stack-Stealing is a dynamic work generation approach where idle worker-
threads request work directly from other workers (aka. work stealing). On receipt

4 Knizikevičius et al.

of a work-stealing request a worker may either respond that it has no work
available, or send a node the search tree as close to the root as possible. That
is, it also assumes that tasks created near the root of the search tree have long
runtimes, and hence are worth communicating.

2.3 Other Parallel FSP searches

Many parallel FSP searches are handcrafted, in contrast our impementation
uses the general purpose YewPar framework. A master-worker paradigm is com-
mon where tasks and new knowledge are stored on a centralised master and
distributed dynamically to workers, e.g. [7,15]. To overcome the centralisation bot-
tleneck decentralised approaches use work-stealing, not unlike the StackStealing
coordination, e.g. [21,20].

Some recent permutation FSP implementations have obtained excellent per-
formance on GPUs, sometimes exploiting 104 GPU cores e.g. [9]. Some of these
approaches exploit a specific Integer-Vector-Matrix (IVM) data-structure to
enable efficient parallelism both on CPUs and hybrid CPU/GPU architectures,
e.g. [10,11]. Compared with YewPar, GPU and hybrid CPU/GPU programming
requires significantly more developer effort.

Crucially previous parallelisations are similar to DepthBounded and Stack-
Stealing search coordinations, but we are not aware of any prior parallelisation
using a Budget coordination.

3 FSP Implementations

We engineer two entirely standard FSP solvers for comparison purposes: a direct
sequential C++ implementation, and a YewPar lazy node generator that supports
sequential, and three parallel searches: one for each coordination. Our implemen-
tations [14] are branch-and-bound and use the common approach of maintaining
two partial schedules σ1 (initial schedule) and σ2 (final schedule) [16,11]. They
are competitive rather than state-of-the-art FSP solvers.

Branching adds an unscheduled job (chosen in ascending numerical order) j
to either σ1 or σ2. The choice of σ1 or σ2 is based on the Alternate rule [11] that
adds j to σ1 if the current tree depth is odd, else σ2. We use the simple One
Machine Bound of Ignall and Schrage [12] that has low runtime at the cost of
some tightness.

Finally, we use the NEH approximation algorithm [17] to compute an initial
upper bound before search.

Listing 1.1. YewPar StackStealing FSP Search
1 sol = StackStealing <GenNode , Optimisation , BoundFunction <bound_func >,

ObjectiveComparison <std::less <unsigned >>>::search(space , root , params);

Listing 1.2. YewPar Budget FSP Search
1 params.backtrackBudget = opts["backtrack -budget"].as<unsigned >();
2 sol = Budget <GenNode , Optimisation , BoundFunction <bound_func >,

ObjectiveComparison <std::less <unsigned >>>::search(space , root , params);

Parallel Flowshop in YewPar 5

3.1 Comparing YewPar and Direct Solver Programs

The direct implementation requires some 370 source lines of code (SLOC) [14],
as counted with CLOC. In comparison, the YewPar Sequential implementation
requires 390 SLOC [14]. It is easy to refactor an existing search to a Lazy Node
Generator as much of the code, e.g. bounding functions is shared. Parallelising
a YewPar search entails specifying reusable serialisation functions (30 SLOC).
Thereafter specifying an alternate parallel search requires only a few lines of
code, and Listings 1.1 and 1.2 show the YewPar stack stealing and budget FSP
parallelisations.

4 Validation, Baselining and Parameter Tuning

4.1 Experimental setup

Experiments are run on a Beowulf cluster consisting of 16 nodes (256 cores).
Each node uses Ubuntu 14.04.3 LTS, has 2 Intel Xeon E5-2640v2 2GHz CPU
(no hyper-threading), 64GB of RAM, and a 10Gb Ethernet Interconnect. For
YewPar each node dedicates one core to management tasks meaning that each
node has 15 worker threads (workers) doing sub-tree search.

Performance analysis of parallel searches is notoriously difficult due to the
non-determinism caused by pruning, finding alternate valid solutions, and random
work-stealing. These lead to performance anomalies [8] that manifest as slowdowns
or superlinear speedups. We control for this by investigating multiple FSP
instances, running each experiment multiple times, and reporting cumulative
statistics.

Table 1. 10 Taillard validation examples, and baselining YewPar against the direct
and LL solvers [10].

Instance Make-
span

Direct solver
runtime(s)

YewPar
runtime(s)

YewPar:Direct
Slowdown

LL
runtime(s)

YewPar:LL
Slowdown

Ta21 2297 96590 104928 8.6% 24489 328.5%
Ta22 2099 5039 5479 8.7% 11758 -53.4%
Ta23 2326 192641 208976 8.5% 79322 163.5%
Ta24 2223 12732 13758 8.1% 19753 -30.3%
Ta25 2291 16425 17963 9.4% 25332 -29.1%
Ta26 2226 32744 35302 7.8% 34562 2.1%
Ta27 2273 39013 42421 8.7% 28295 49.9%
Ta28 2200 1022 1119 9.5% 4569 -75.5%
Ta29 2237 1546 1688 9.2% 3674 -54.1%
Ta30 2178 1139 1237 8.6% 898 37.8%
Geometric
mean 8.7% -4.72%

6 Knizikevičius et al.

4.2 Validation

The "correctness" of the direct and YewPar FSP solvers is validated by comparing
their makespans with published results for 107 well-known instances including the
Carlier instances [6], the first thirty Taillard instances [18], and VRF instances
[19] up to 20 jobs, 15 machines, excluding one instance with runtime over 12 hours
[14]. Table 1 illustrates some Taillard instances (21-30), that have significant
runtime and published performance results [10]. For all instances the direct and
YewPar solvers visits an equal number of search tree nodes, showing that the
search algorithms are nearly identical.

4.3 Sequential Performance Baselining

Columns 3, 4 and 5 of Table 1 report the direct and YewPar solver runtimes,
and the YewPar slowdown. As YewPar provides reusable search encodings we
expect it to have some overheads compared with a search-specific solver like the
direct solver [5]. For these 10 instances the observed slowdown varies from 7.8%
to 9.5% with a geometric mean of 8.7%.

To relate YewPar performance with an existing algorithm Columns 6 and 7
of Table 1 compare the runtimes of sequential YewPar with a recent linked-list
(LL) solver [10] for Taillard instances 21-30 [18]. The hardware/OS platforms are
similar, specifically the core has the same 2GHz clock frequency (on a pair of
8-core Sandy Bridge E5-2650 processors), uses 32 GB of memory, and CentOS
6.5 Linux [10].

0
200
400
600
800
1000
1200
1400

103 104 105 106 107

Ru
nt
im

e
(s)

Budget

ta22
ta24
ta25

ta26
ta27

Fig. 1. Budget parameter sweep: runtime on 120 workers

As expected the comparative runtimes vary greatly: exactly half of the YewPar
runtimes are shorter than LL. The differences are almost certainly due to the
solvers using different bounding operators: YewPar uses a computationally cheap
One Machine Bound (section 3) while LL uses a more expensive, but tighter Two
Machine Bound [10]. A One Machine Bound may extend runtime if it fails to

Parallel Flowshop in YewPar 7

prune significant subtrees, but being computationally inexpensive may reduce
runtimes in searches where tight bounds are less important.

As before we expect that the generic YewPar solver will incur overheads
compared with a search-specific solver like LL. YewPar slowdowns vary from
-75.5% to 328.5%. The geometric mean slowdown for these search instances is
-4.72%, and we conclude that the sequential performance of YewPar solver is
comparable to state-of-the-art solvers.

4.4 Parallel Search Parameter Tuning

Two YewPar parallel search coordinations require the selection of suitable param-
eter values, specifically the depth at which to spawn tasks in a DepthBounded
search, and the number of backtracks that a search task should perform in a
Budget search before generating new search tasks. We determine suitable values
from a parameter sweep using Taillard instances with sequential runtimes between
1 and 12 hours. To account for random work stealing the instances are measured
three times on 120 workers, and we plot lower, median, and upper values.

The budget parameter sweep initially considered exponentially increasing
values between 103 and 107, as shown in Figure 1. Runtimes fall between budgets
103 - 104, and increase between 105 - 107. Additional measurements at 2× 104

and 5× 104 reveal small differences, and we select a budget of 5× 104 for the
evaluation in section 5. The sweep for the depth is similar, and identifies depth 5
as providing the best performance for these searches.

5 Comparing Three Parallel FSP Searches

A key benefit of the YewPar framework is that experimenting with alternative
parallel coordinations is easy, requiring limited code changes (Section 3.1). This
is essential as previous work [3] shows that there is no best coordination for
different search applications.

This section compares the performance of StackStealing, DepthBounded and
Budget YewPar FSP searches. We again select the Ta21-30 instances, and group
them based on the sequential YewPar runtimes: small instances complete within
3.5 hours, and large within 60 hours on our cluster. As is typical for parallel
workloads, the small instances have least scope to scale as runtimes are already
low on small numbers of cores, so we initially focus on the large Taillard instances,
i.e. Ta21–27 excluding Ta22. The performance of the three parallel search coordi-
nations is shown in Figure 2. Speedups are relative to sequential YewPar runtime,
and we plot ideal speedup as a dashed line. Runtimes and speedups are shown
on log-log plots, with error bars representing the min/max measured runtimes.

5.1 StackStealing Evaluation (top plots)

While StackStealing requires no parameter tuning, it does not scale particularly
well and quickly diverges from linear speedup. It is likely that many tasks are

8 Knizikevičius et al.

101
102
103
104
105

15 30 60 120 240

St
ac
kS
te
al

Runtime(s)

101
102
103
104
105

15 30 60 120 240

D
ep
th
Bo

un
de
d

101
102
103
104
105

15 30 60 120 240

Bu
dg

et

Workers

15
60
120

240
300

15 60 120 240

ta21 ta23 ta24 ta25 ta26 ta27

Speedup (rel. YewPar Seq)

15
60
120

240
300

15 60 120 240

ta21 ta23 ta24 ta25 ta26 ta27

15
60
120

240
300

15 60 120 240
Workers

ta21 ta23 ta24 ta25 ta26 ta27

Fig. 2. Runtime and Speedups for 3 parallel flowshop searches: StackStealing, Depth-
Bounded and Budget.

Parallel Flowshop in YewPar 9

pruned early and the hardest subtrees remain on a single cluster node (effectively
giving 15 workers). As steals are random it seems that remote workers don’t
locate hard tasks.

The range between minimum and maximum runtimes is often large (note log
scale), as expected due to random work-stealing. Despite these issues, without
exploiting a large cluster and without parameter tuning, runtimes are significantly
reduced. For example the median runtime of Ta23 falls from 4.7 hours on 15
workers (58 hours on a single worker) to less than an hour on 240 workers.

5.2 DepthBounded Evaluation (middle plots)

The DepthBounded searches use the cutoff depth dcutoff = 5 determined to be
effective (subsection 4.4). DepthBounded search achieves good speedups for all
instances, with no apparent limit to the scaling. As DepthBounded spawns new
tasks only as a task at depth < dcutoff is executed, a single steal may generate
multiple tasks improving load balance, and hence speedups. This is especially
true for the relatively low dcutoff values used here. This is also likely why the
runtime ranges are relatively small compared to StackStealing despite random
work distribution.

5.3 Budget Evaluation (bottom plots)

The searches use a budget of 5 × 104 backtracks that was determined to be
effective (subsection 4.4). Speedups are excellent: near linear in all cases, with
some super-linear speedups due to knowledge transfer and speculation. We believe
that Budget performs so well because it is able to generate only tasks that contain
large amounts of work. Clearly this task size heuristic is more effective than the
heuristics used in the other coordinations, e.g. depth. As for DepthBounded the
range of runtimes is small despite random work distribution.

Table 2. Comparing parallel search coordinations on Small FSP instances with 15
or 240 workers. Smaller speedups than for larger instances, and Budget outperforms
DepthBounded and StackStealing (runtimes in seconds).

Sequential StackStealing DepthBounded Budget
runtime runtime spdup runtime spdup runtime spdup

Instance 1 15 240 240 15 240 240 15 240 240

Ta22 5479 642 133 41 590 68 81 463 55 100
Ta28 1119 102 31 36 252 19 59 80 12 93
Ta29 1688 179 17 99 330 32 53 112 19 89
Ta30 1237 142 20 62 281 22 56 95 19 65

Geom.
mean 55 61 86

10 Knizikevičius et al.

5.4 Small Search Instances

While large search instances provide the best parallel performance, YewPar can
also be applied to smaller search instances. Table 2 summarises the performance
of the three parallel search coordinations for the four small Taillard instances, i.e.
with sequential runtimes less that 3.5 hours. It shows runtimes in seconds and
speedups relative to sequential YewPar runtime with 15 and 240 workers. 15 is
the number of workers on a single shared-memory cluster node, and 240 workers
is the maximum number of workers on the 16-node cluster.

Runtimes on small numbers of cores are already short, e.g. around 10 minutes
on 15 cores, and hence the speedups are lower than for larger instances. Never-
theless all three search coordinations achieve mean speedups in excess of 50 for
these 4 instances.

Table 3. Comparing parallel search coordinations on Large FSP instances with 15
or 240 workers. Budget outperforms DepthBounded and StackStealing (runtimes in
seconds).

Sequential StackStealing DepthBounded Budget
runtime runtime spdup runtime spdup runtime spdup

Instance 1 15 240 240 15 240 240 15 240 240

Ta21 104928 9620 1354 78 7359 751 140 8988 353 297
Ta23 208976 17009 2145 97 17251 1397 150 16141 941 222
Ta24 13758 1331 268 51 1196 116 119 1122 59 233
Ta25 17963 1415 395 46 1579 131 137 1325 76 236
Ta26 35302 3914 745 47 2393 305 116 2117 158 223
Ta27 42421 3501 715 59 3219 280 152 2112 157 270

Geom.
mean 61 135 246

5.5 Parallel Coordination Comparison

Table 3 summarises the performance of the three parallel search coordinations
for the 6 large FSP instances. We compare the performance of the search coordi-
nations considering both large and small FSP instances (Table 2).

For both large and small instances Budget outperforms the other coordinations,
with significantly reduced runtimes, and the highest speedups. For example the
geometric mean speedup for the large instances is more than 4 times that
of StackStealing: 245× compared with 61×. For the four smaller instances it
provides mean speedups over 80×. Indeed the speedups for 2 of the 10 instances
are super-linear with a maximum speedup of 297×.

DepthBounded is next best, for the larger instances it consistently provides
speedups over 115× and a mean speedup of 135×, and for the smaller instances

Parallel Flowshop in YewPar 11

speedups over 60×. StackStealing provides the worst performance with not a
single instance reaching 100× speedup, and the mean for the 6 larger instances
being 61×.

6 Conclusions

We report the first YewPar encoding of a non-trivial OR problem: a standard
FlowShop Scheduling solver. The encoding is low effort: around 390 source lines of
code (SLOC), compared with 370 for a direct FSP implementation (subsection 3.1).
Alternate parallelisations simply entail (1) some reusable serialisation (30 SLOC),
and (2) configuring an appropriate skeleton from the YewPar library: a few lines
of code and the selection of suitable parameters, e.g. compare Listings 1.1 and 1.2.
Moreover the Budget parallel search coordination is a first for FSP.

Our solvers are validated with 107 standard (Carlier, Taillard, and VRF)
FSP instances. We baseline the sequential performance of YewPar against the
LL state-of-the-art solver [10] on a similar hardware/OS platform. There is
considerable variation in the runtimes of the Ta21 - Ta30 searches (Columns 4&6
of Table 1) as the solvers use different bounding operators. The performance of
LL and YewPar is comparable for the searches: YewPar is faster in 5 out of 10
instances, and on average 5% faster. There is, however, a performance penalty
for YewPar’s generality: a mean 8.7% slowdown compared with the direct solver
for the same 10 Taillard instances (Columns 3,4&5 of Table 1).

Systematic performance measurements of the three parallel FSP searches on
a Beowulf cluster with 240 workers shows that YewPar increases the number of
instances that can practically be solved, e.g. the runtime of Ta21 falls from 2.4 days
to 16 minutes. YewPar also provides useful speedups for small search instances,
e.g. mean speedups of over 50× in Table 2. Of the three search coordinations,
the novel Budget coordination performs best on both large and small instances.
For example on the six larger Taillard instances it consistently provides absolute
speedups of over 220× and a geometric mean speedup of 246×. DepthBounded is
next best, for the larger instances it consistently provides speedups over 115×
and a mean speedup of 135×. Although it requires no prior parameter tuning,
StackStealing provides the worst performance with not a single instance reaching
100× speedup, and the mean for the 6 larger instances being 61× (Tables 2 and 3
in subsection 5.5).

Future work may compare the parallel performance implications of alternate
bounding functions, e.g. the Two Machine Bound [10], and this can be done
without any parallelism code changes. There are many very large FSP instances
that require weeks to compute sequentially, and it would be interesting to explore
whether these representative OR problems could be practically solved by deploying
YewPar on a mid-scale HPC (around 10K cores).

References

1. Enrique Alba, Francisco Almeida, Maria J. Blesa, J. Cabeza, Carlos Cotta, Manuel
Díaz, Isabel Dorta, Joaquim Gabarró, Coromoto León, J. Luna, Luz Marina Moreno,

12 Knizikevičius et al.

C. Pablos, Jordi Petit, Angélica Rojas, and Fatos Xhafa. MALLBA: A Library
of Skeletons for Combinatorial Optimisation (Research Note). In Euro-Par 2002,
Parallel Processing, 8th International Euro-Par Conference, Proceedings, pages
927–932, 2002. doi:10.1007/3-540-45706-2_132.

2. Ali Allahverdi. A survey of scheduling problems with no-wait in process. European
Journal of Operational Research, 255(3):665–686, 2016. doi:10.1016/j.ejor.2016.
05.036.

3. Blair Archibald. Algorithmic skeletons for exact combinatorial search at scale.
PhD thesis, University of Glasgow, UK, 2018. URL: https://theses.gla.ac.uk/
31000/.

4. Blair Archibald, Fraser Dunlop, Ruth Hoffmann, Ciaran McCreesh, Patrick Prosser,
and James Trimble. Sequential and parallel solution-biased search for subgraph
algorithms. In Louis-Martin Rousseau and Kostas Stergiou, editors, Integration of
Constraint Programming, Artificial Intelligence, and Operations Research - 16th
International Conference, CPAIOR 2019, Thessaloniki, Greece, June 4-7, 2019,
Proceedings, volume 11494 of Lecture Notes in Computer Science, pages 20–38.
Springer, 2019. doi:10.1007/978-3-030-19212-9_2.

5. Blair Archibald, Patrick Maier, Rob Stewart, and Phil Trinder. Yewpar: skele-
tons for exact combinatorial search. In Rajiv Gupta and Xipeng Shen, editors,
PPoPP ’20: 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2020, pages 292–307. ACM, 2020. doi:10.1145/3332466.3374537.

6. Jacques Carlier. Ordonnancements à contraintes disjonctives. Rairo-operations
Research, 12(4):333–350, 1978.

7. Imen Chakroun and Nouredine Melab. HB&B@GRID: An heterogeneous grid-
enabled branch and bound algorithm. In International Conference on High Perfor-
mance Computing & Simulation, HPCS 2016, 2016, pages 697–704. IEEE, 2016.
doi:10.1109/HPCSim.2016.7568403.

8. A. de Bruin, G.A.P. Kindervater, and H.W.J.M. Trienekens. Asynchronous parallel
branch and bound and anomalies. In Afonso Ferreira and José Rolim, editors,
Parallel Algorithms for Irregularly Structured Problems, volume 980 of Lecture
Notes in Computer Science, pages 363–377. Springer Berlin Heidelberg, 1995.
doi:10.1007/3-540-60321-2_29.

9. Jan Gmys. Solving large permutation flow-shop scheduling problems on gpu-
accelerated supercomputers. arXiv preprint arXiv:2012.0951, 2020.

10. Jan Gmys, Rudi Leroy, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens.
Work stealing with private integer-vector-matrix data structure for multi-core
branch-and-bound algorithms. Concurrency Computation Practice and Experience,
28(18):4463–4484, 2016. doi:10.1002/cpe.3771.

11. Jan Gmys, Mohand Mezmaz, Nouredine Melab, and Daniel Tuyttens. A com-
putationally efficient branch-and-bound algorithm for the permutation flow-shop
scheduling problem. European Journal of Operational Research, 284(3):814–833,
2020. doi:10.1016/j.ejor.2020.01.039.

12. Edward Ignall and Linus Schrage. Application of the branch and bound technique
to some flow-shop scheduling problems. Operations Research, 13:400–412. doi:
10.1287/opre.13.3.400.

13. Stefan Kehrer and Wolfgang Blochinger. Development and operation of elastic
parallel tree search applications using TASKWORK. In Cloud Computing and
Services Science - 9th International Conference, CLOSER 2019, Revised Selected
Papers, volume 1218 of Communications in Computer and Information Science,
pages 42–65. Springer, 2019. doi:10.1007/978-3-030-49432-2_3.

https://doi.org/10.1007/3-540-45706-2_132
https://doi.org/10.1016/j.ejor.2016.05.036
https://doi.org/10.1016/j.ejor.2016.05.036
https://theses.gla.ac.uk/31000/
https://theses.gla.ac.uk/31000/
https://doi.org/10.1007/978-3-030-19212-9_2
https://doi.org/10.1145/3332466.3374537
https://doi.org/10.1109/HPCSim.2016.7568403
https://doi.org/10.1007/3-540-60321-2_29
https://doi.org/10.1002/cpe.3771
https://doi.org/10.1016/j.ejor.2020.01.039
https://doi.org/10.1287/opre.13.3.400
https://doi.org/10.1287/opre.13.3.400
https://doi.org/10.1007/978-3-030-49432-2_3

Parallel Flowshop in YewPar 13

14. Ignas Knizikevičius, Phil Trinder, and Blair Archibald. Low effort parallel scalable
flowshop in yewpar [code and data repository], 2021. doi:10.5281/zenodo.5646543.

15. Samia Kouki, Mohamed Jemni, and Talel Ladhari. Scalable distributed branch and
bound for the permutation flow shop problem. In Eighth International Conference
on P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2013, pages
503–508. IEEE, 2013. doi:10.1109/3PGCIC.2013.86.

16. Talel Ladhari and Mohamed Haouari. A computational study of the permutation
flow shop problem based on a tight lower bound. Computers and Operations
Research, 32:1831–1847, 2005. doi:10.1016/j.cor.2003.12.001.

17. Muhammad Nawaz, E Emory Enscore, and Inyong Ham. A heuristic algorithm
for the m-machine, n-job flow-shop sequencing problem. Omega, 11:91–95, 1983.
doi:10.1016/0305-0483(83)90088-9.

18. Eric Taillard. Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64:278–285, 1993. doi:10.1016/0377-2217(93)90182-M.

19. Eva Vallada, Rubén Ruiz, and Jose M. Framiñan. New hard benchmark for flowshop
scheduling problems minimising makespan. Eur. J. Oper. Res., 240(3):666–677,
2015. doi:10.1016/j.ejor.2014.07.033.

20. Trong-Tuan Vu and Bilel Derbel. Parallel branch-and-bound in multi-core multi-
cpu multi-gpu heterogeneous environments. Future Generation Computer Systems,
56:95–109, 2016. doi:10.1016/j.future.2015.10.009.

21. Trong-Tuan Vu, Bilel Derbel, Ali Asim, Ahcène Bendjoudi, and Nouredine Melab.
Overlay-centric load balancing: Applications to UTS and B&B. In 2012 IEEE
International Conference on Cluster Computing, CLUSTER 2012, pages 382–390.
IEEE Computer Society, 2012. doi:10.1109/CLUSTER.2012.17.

https://doi.org/10.5281/zenodo.5646543
https://doi.org/10.1109/3PGCIC.2013.86
https://doi.org/10.1016/j.cor.2003.12.001
https://doi.org/10.1016/0305-0483(83)90088-9
https://doi.org/10.1016/0377-2217(93)90182-M
https://doi.org/10.1016/j.ejor.2014.07.033
https://doi.org/10.1016/j.future.2015.10.009
https://doi.org/10.1109/CLUSTER.2012.17

	Parallel Flowshop in YewPar

