
Software and Systems Modeling (2024) 23:343–367
https://doi.org/10.1007/s10270-023-01121-5

SPEC IAL SECT ION PAPER

Quantitative modelling and analysis of BDI agents

Blair Archibald1 ·Muffy Calder1 ·Michele Sevegnani1 ·Mengwei Xu1

Received: 17 June 2022 / Revised: 3 July 2023 / Accepted: 17 July 2023 / Published online: 28 August 2023
© The Author(s) 2023

Abstract
Belief–desire–intention (BDI) agents are a popular agent architecture. We extend conceptual agent notation (Can)—a BDI
programming language with advanced features such as failure recovery and declarative goals—to include probabilistic action
outcomes, e.g. to reflect failed actuators, and probabilistic policies, e.g. for probabilistic plan and intention selection. The
extension is encoded in Milner’s bigraphs. Through application of our BigraphER tool and the PRISM model checker,
the probability of success (intention completion) under different probabilistic outcomes and plan/event/intention selection
strategies can be investigated and compared. We present a smart manufacturing use case. A significant result is that plan
selection has limited effect compared with intention selection. We also see that the impact of action failures can be marginal—
even when failure probabilities are large—due to the agent making smarter choices.

Keywords BDI agents · Quantitative analysis · Bigraphs · Probabilistic modelling · Robotic software

1 Introduction

Awell-studied and popular architecture for developing ratio-
nal agents is the Belief–desire–intention (BDI) paradigm.
BDI agents build on a sound theoretical foundation to
model an agent where (B)eliefs represent what the agent
knows, (D)esires what the agent wants to bring about, and
(I)ntentions the desires the agent is currently acting upon.
BDI agents have inspired many agent-oriented programming
languages includingAgentSpeak [1],Can [2],CanPlan [3],
3APL [4], and 2APL [5] along with a collection of mature
software toolkits and platforms including JACK [6], Jason
[7], and Jadex [8]. BDI agents have been recognised for their
efficiency and scalability in areas, such as business [9] and
healthcare [10].

Communicated by Antonio Cerone and Frank de Boer.

B Mengwei Xu
mengwei.xu@glasgow.ac.uk

Blair Archibald
blair.archibald@glasgow.ac.uk

Muffy Calder
muffy.calder@glasgow.ac.uk

Michele Sevegnani
michele.sevegnani@glasgow.ac.uk

1 School of Computing Science, University of Glasgow,
Glasgow, UK

In BDI languages, desires and intentions are often repre-
sented using a plan library. Each plan describes a course of
actions which an agent can perform to address an adopted
event (often representing a task from the external environ-
ment) given some beliefs hold, while the set of intentions are
the plans currently being executed. Typically BDI languages:
(1) assume that action outcomes (i.e. the effects on external
environment) are deterministic, (2) remain agnostic inter-
nally to the choice of an applicable plan to address an adopted
event, (3) remain agnostic internally to the choice of a pend-
ing event to adopt from the external environment, (4) remain
agnostic internally to the order that intentions are progressed.
These assumptions facilitate the formal verification of agent
behaviour through a non-deterministic underlying transi-
tion system (depicted in Fig. 3) in work such as [11, 12]),
where plan, event, and intention selection denotes branching
choices and actions have a single outcome. As such, most
verification approaches are limited to analysing qualitative
properties, querying whether an intention completes or not.

Though useful to have qualitative assurance, unfor-
tunately, this often does not adequately represent agent
behaviours in realistic setting such as cyber-physical robotics
systems [13]. For example, the outcome of an action may be
probabilistic due to imprecise actuation, e.g. the robot tries
to open a door, but might fail. Plans, event, and intentions are
not created equal and likely have different (domain-specific)
characteristics such as preference and urgency, which may

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-023-01121-5&domain=pdf

344 B. Archibald et al.

require different certain selection strategies (e.g. ordered,
fixed schedules, or sampled fromaprobabilistic distribution).
As a result, there is a growing need for formal techniques
that can provide support for automated analysis of quantita-
tive properties such as “what is the probability of eventually
completing an intention?” and “what is the worst-case proba-
bility of eventually completing an intention over all possible
selection strategies?”.

To illustrate the problem, we use a robot packaging task
in a smart manufacturing scenario as an example (detailed
quantitative analysis is given in Sect. 4). The overall goal
is to pack products automatically for shipping. The robot
insulates products with suitable wrapping bags, to prevent
temperature rise and consequent spoilage, and then transfers
the wrapped products to a storage location. There are two
types of wrapping bags: premium and standard. The stan-
dard wrapping is preferred as the cheaper option, however
it may not be effective if the product temperature is already
too high, and/or the packaging can occasionally break, which
results in damaged product (i.e. a negative action outcome
with some probability). Before wrapping the products, the
robot also has to decide which product to handle first (as
there may be multiple products waiting), meaning handling
a product before it spoils requires a notion of urgency. While
it is important to prioritise the more urgent products, it is
also sensible to progress less urgent ones from time-to-time,
before they also become urgent and spoiled. So we need to
model and quantify agent behaviour when there are a range
of choices, inherent uncertainty, and characteristics of pref-
erence and urgency. For example, we may wish to know the
probability the robot can complete packaging under different
schedules, negative outcomes, and decisions.

In the BDI community, probabilistic action outcomes are
usually implicit—requiring the agent to sense failures and
revise the beliefs (i.e. to enable new plans)—and are often
disregarded when modelling. Although most agent language
semantics specify non-deterministic plan selection, e.g. in
[2], it is typical in practice for plans to be ordered—either
statically [7] or at run-time [14]—to enforce deterministic
branching. While desirable to exploit the highest priority
plan, it may be worthwhile exploring other plans every now
and then to avoid being stuck in a local maximum. Simi-
larly, event/intention selection are also not implemented in
a non-deterministic fashion either, but in a fixed schedule
including Round-Robin (executing a step of each inten-
tion in turn) or First-In-First-Out. Interestingly, customised
selection implementations change the semantics of agent lan-
guages implicitly, and is often a pointwhere implementations
and semantics diverge.

We argue that the highest ordering (i.e. local maximum)
and fixed schedules (e.g. Round-Robin) are not always the
best approach to plan, event, and intention selection and sug-
gest agents should support probabilistic selection strategies

together with the need to evaluate the undesired outcomes
of actions. We present a formal approach (in contrast with
the informal customisation of implementations mentioned
above) to specify, model, and quantitatively analyse BDI
agents with probabilistic action outcomes and plan, event,
and intention selections drawn from a probability distribu-
tion. Quantitative verification, e.g. asking the probability
some intention completes, aids the design of agents by
enabling plan, event, and intention selection strategies to
be explored and compared, and mitigates the risk of nega-
tive action outcomes by providing much-needed quantitative
assurance.

1.1 Approach

We have chosen to work with Can [2] as it captures the
essence of BDI concepts without describing implementation
details, such as data structures. As a superset of AgentSpeak
[1], Can includes declarative goals, concurrency, and fail-
ure recovery. Here, we extend the operational semantics to a
probabilistic setting. Although we focus on Can, its features
are similar to other BDI languages and our approach would
apply equally well to them.

Our approach is depicted in Fig. 1. On the left, we have
the inputs: (above) CAN semantics and selection strategies
and (below) the agent program. In the middle, we have the
abstract machine: (above) the CAN semantics are encoded
by probabilistic bigraph reaction rules and (below) the agent
program is encoded by bigraph entities. On the right we
have the execution engines BigraphER [15] and PRISM
[16]. We use BigraphER to generate a transition system (a
DTMC—Discrete TimeMarkov Chain) of all possible agent
behaviours, for each given combination of selection strate-
gies and initial states. We express successful (or failure)
completion of intentions as a Probabilistic Computation Tree
Logic (PCTL) [17] formula (e.g. eventually the intention(s)
complete successfully). The transition system and formula
are the inputs to the PRISM model checker, which returns
a likelihood. Put more simply, the user simply “runs” their
PCTL formula and agent model with different plan/inten-
tion/event selection strategies, as required.

We employ probabilistic bigraphs [18] as the interme-
diate language, building on our previous work on (non-
probabilistic) bigraphs as an executable semantics for (non-
probabilistic) Can [19]. We choose bigraphs, over any other
formalism, for several reasons. First, its entity and type
system allow a natural encoding of beliefs, desires, inten-
tions, and plans as parallel regions. Second, its matching and
rewriting nature closely mirrors Can operational semantics,
allowing us flexibility to trial different underlying seman-
tics by changing a few bigraph rules. Third, the priority
and conditional rule features provided in BigraphER sup-
port straightforward expression of selection strategies (e.g.

123

Quantitative modelling and analysis of BDI agents 345

Fig. 1 Analysis of intention success for probabilistic CAN programs with different selection strategies

ordered and fixed schedules). Fourth, there is an intuitive
diagrammatic representation. The overall result is a user-
friendly, direct and smooth translation that supports both
probabilisticmodelling and predicate-labelled transition sys-
tems that can be exported to model checkers like PRISM.

Parts of this study and preliminary results were presented
in [20]. We make the following additional research contribu-
tions:

• a probabilistic extension of the full structural operational
semantics of Can;

• an extended executable semantics of Can based on prob-
abilistic bigraphs;

• a presentation of how different selection strategies are
encoded in bigraphs;

• an extended evaluation and analysis use case, comparing
various plan, event, and intention selection under proba-
bilistic action outcomes, e.g. ordered and Round-Robin;

• a reflection on insights gained from creating a prob-
abilistic extension of Can, and the practical value of
probabilistic agents for, e.g. agent-designers.

The paper is organised as follows. In Sect. 2 we provide a
brief overview of BDI agents and bigraphs. In Sect. 3 we pro-
pose the probabilistic extension of Can semantics. In Sect. 4
we evaluate our approach on a smart manufacturing exam-
ple. In Sect. 5, we reflect on the generality and limits of our
approach. We discuss related work in Sect. 6, future work in
Sect. 7, and conclude in Sect. 8.

2 Background

2.1 BDI agents

ABDI agent has an explicit representation of beliefs, desires,
and intentions. The beliefs correspond to what the agent
believes about the environment, while the desires are a set of
external events that the agent can respond to. To respond to
those events, the agent selects a plan (given its beliefs) from
the pre-defined plan library and commits to the selected plan
by turning it into a new intention.

2.1.1 BDI syntax

The Can language formalises a classical BDI agent consist-
ing of a belief base B and a plan library �. The belief base
B is a set of formulas encoding the current beliefs and has
belief operators for entailment (i.e. B |� ϕ), and belief atom
addition (resp. deletion) B ∪ {b} (resp. B\{b}). In general,
any logic is allowed providing entailment is supported for a
belief base. A propositional logic with natural number com-
parisons is used in this work. A plan library � is a collection
of plans of the form e : ϕ ← P with e the triggering event,
ϕ the context condition, and P the plan-body. The triggering
event e specifies why the plan is triggered, while the context
condition ϕ determines when the plan-body P is able to han-
dle the event. Events can be either be external (i.e. from the
environment in which the agent is operating) or internal (i.e.
sub-goals that the agent itself tries to accomplish). A (par-
tially executed) plan-body P for a selected plan e : ϕ ← P
is the intention that is addressing e. The language used in the
plan-body is defined by the following grammar:

P ::= nil | +b | −b | act |?ϕ | e | P1;P2 | P1 � P2 |
P1 ‖ P2 | e : (| ϕ1 : P1, · · · , ϕn : Pn |) |
goal(ϕs,P, ϕ f)

where nil is an empty program, +b and −b belief addition
and deletion, act a primitive action, ?ϕ a test for ϕ in the
belief base, and e is a sub-event (i.e. internal event). Actions
act take the form act = ϕ ← 〈φ−, φ+〉, where ϕ is the
pre-condition, and φ− and φ+ are the deletion and addition
sets (resp.) of belief atoms, i.e. a belief base B is revised to
be (B\φ−) ∪ φ+ when the action executes. We also denote
the set of actions in the plan library as �. To execute a sub-
event, a plan (corresponding to that event) is selected and the
plan-body added in place of the event. In this way we allow
plans to be nested (similar to sub-routine calls in other lan-
guages). In addition, there are composite programs P1;P2

for sequence, P1 � P2 that executes P2 in the case that P1

fails, and P1 ‖ P2 for interleaved concurrency. A set of rele-
vant plans (those that respond to the same event) is denoted
by e : (| ψ1 : P1, · · · , ψn : Pn |). Finally, a declarative
goal program goal(ϕs,P, ϕ f) expresses that the declarative

123

346 B. Archibald et al.

goal ϕs should be achieved through program P , failing if ϕ f

becomes true, and retrying as long as neither ϕs nor ϕ f is
true (see in [3] for details).

2.1.2 BDI semantics

Can semantics is specified by two types of transitions. The
first type, denoted ⇒, specifies agent-level evolution over
〈Ee,B, �〉, detailing how to execute a complete agent where
Ee is the set of pending external events to address (the
desires), B the belief base, and � a set of partially executed
plan-bodies (intentions). The second, denoted →, specifies
intention-level evolution on configurations 〈B, P〉 where B
is the belief base, and P the plan-body currently being exe-
cuted.

The agent-level semantics are given in Fig. 2a. Rule Aevent

handles external events, that originate from the environment,
by adopting them as intentions. Rule Astep selects an inten-
tion from the intention base, and evolves a single step w.r.t.
the intention-level transition, while Aupdate discards any
intentions that cannot make progress (either because they
have already succeeded, or failed).

Figure2b gives intention-level rules for evolving any sin-
gle intention. For example, the rule act handles the execution
of an action, when the pre-condition ψ is met, resulting in
a belief state update. Rule event replaces an event with the
set of relevant plans, while rule select chooses an applicable
plan from a set of relevant plans while retaining un-selected
plans as backups. With these backup plans, rules for failure
recovery �;, ��, and �⊥ enable new plans to be selected if
the current plan fails (e.g. due to environment changes).Rules
; and ;� allow executing plan-bodies in sequence, while rules
‖1, ‖2, and ‖� specify how to execute (interleaved) concur-
rent programs. Rules Gs and G f deal with declarative goals
when either the success condition ϕs or the failure condi-
tion ϕ f become true. Rule Ginit initialises persistence by
setting the program in the declarative goal to be P� P , i.e. if

P fails try P again. This ensures P runs indefinitely unless
either the success condition ϕs or failure condition ϕ f holds.
Rule G; takes care of performing a single step on an already
initialised program. Finally, the derivation rule G� re-starts
the original program if the current (partially-executed) pro-
gram has finished or got blocked (when neither ϕs nor ϕ f

becomes true).

2.1.3 Agent example

For illustration, we give a classic example [19]: arranging a
conference trip. The agent program is shown in Listing 1,
and commentary follows.

Listing 1: Agent design of an conference trip arrangement.
1 // Plans
2 e_conference_travelling : own_car ∧ driving_distance ← start_car; driving
3 e_conference_travelling : budget_allowed ∧ flight_available
4 e_get_on\board : flight_booked ← go_to_airport; flying
5 // External events
6 e_conference_travelling
7 // Action descriptions
8 start_car = car_functional ← 〈φ− = ∅, φ+ = {engine on}〉
9 driving = engine_on ← 〈φ− = ∅, φ+ = {at venue}〉

10 book_flight = true ← 〈φ− = ∅, φ+ = {flight booked}〉
11 go_to_venue = flight_landed ← 〈φ− = ∅, φ+ = {at venue}〉
12 flying = flight_landed ← 〈φ− = {flight booked,at airport}, φ+ = {flight landed}〉

An agent desires to arrange a conference trip, denoted
by an external event e_conference_travelling (line
6). We assume there are only two ways to travel to
the conference. The first is by car, given by the plan
in line 2, which expresses that if the agent believes it
owns a car (i.e. own_car) and the venue is in the driv-
ing distance (i.e. driving_distance), it can start the
car (start_car) and drive (driving) all the way
to the venue. To specify the actions, for example, the
action start_car (line 8) expresses that if the car is func-
tional (i.e. car_functional) and after executing it, the
belief of the engine being on (i.e.engine_on)will be added
while deleting nothing from the belief base.

The second way to travel is by air, given by the plans in
lines 3 to 4. This plan expresses that if the budget allows
and there is a flight, the agent can book the ticket first, then
post internally a sub-event to actually travelling by plane,
and go to the venue after landing. To address the sub-event
e_get_on_board, we have plan in line 4,which expresses
that if the agent believes the flight has been booked, it can go
to the airport and fly by plane.

123

Quantitative modelling and analysis of BDI agents 347

3 Probabilistic CAN semantics

The semantics of Can are specified by two types of transi-
tions. The first is the agent-level transition ⇒ in Fig. 2a that
specifies how to execute a complete agent. The second is the
intention-level transition → in Fig. 2b that specifies how to
evolve a given single intention.

Can semantics feature non-deterministic transitions, e.g.
for plan selection. To allow for probabilistic selection and
action outcomes, wemust extend this to support probabilistic
transitions. Figure3 provides a high level comparison of the
standard non-deterministic, and our newprobabilistic seman-
tics for Can.

Choices appear throughout both the agent and intention
level semantics. An agent with multiple external events to

respond and a set of intentions to pursue is faced with
three operations to choose from, namely agent-level oper-
ation selection. The agent can incorporate any pending
external events specified by semantic rule Aevent , it can
select an intention and execute a step (according to the
intention-level semantics) using Astep, or it can manage the
intention set by removing an unprogressable intentions using
Aupdate. In the original Can semantics, these are chosen
non-deterministically, that is, there is no way to prioritise
completing existing intentions over handling new events.

Once an agent-level operation is chosen, there are fur-
ther decisions to make. For example, which pending external
event (there may be multiple) should be adopted? Similarly,
both Astep and Aupdate must select one intention from a set
of intentions (i.e. intention selection). These choices are also

Fig. 2 Can semantics from [3]

Fig. 3 Non-deterministic (standard Can) and new probabilistic transitions highlighting plan, event, and intention selection, and action execution.
Solid lines are agent-level transitions, while dashed lines are intention-level

123

348 B. Archibald et al.

made non-deterministically, again meaning we cannot pri-
oritise specific events/intentions.

After choosing to step an intention (Astep), progressing
this intention may imply (visualised as dashed lines in Fig. 3)
selecting an applicable plan, progressing concurrent pro-
gram, and executing an action. Again, plan selection is made
non-deterministic using rule select , the order of concurrent
program progress is non-deterministic using ‖1 or ‖2, and
action has only one single outcome by act .

Previous work [19] formally modelled and analysed non-
probabilisticCan (i.e. the left side ofFig. 3).Weextend this to
define a probabilistic semantics for Can, and show how this
allows quantitative analysis. The right side of Fig. 3 shows
our probabilistic extension of Can semantics.

To move from non-deterministic transitions to probabilis-
tic transitions, we employ probabilistic transitions C →p C′
(i.e. move from C to C′ with probability p) [21]. To extend
the non-deterministic transition, the key is to assign prob-
ability to each selection choice. In next sections we detail
why and how we extend both agent-level and intention-level
transitions from Can, and how suitable distributions can be
constructed to support quantitative analysis.

Notation
We use μ, η to refer to probability distributions over a set A.
We write μ = [x �→ p1, y �→ p2] to denote the probability
distribution, over {x, y} where, for example, x is sampled
with probability p1, and access the probability of an element
using function notation, e.g.μ(x) = p1. For a distributionwe
require

∑
p∈μ = 1. Only probabilities for nonzero elements

are given, such that for [x �→ 1, y �→ 0] we instead write
[x �→ 1]. We use Dist(A) to refer to the set of discrete
probability distributions over A, i.e. a set with probability
distributions as elements.

We denote the set of all possible belief atoms, external
events and intentions—for a specific program—as B, Ee,
and � respectively. At each agent step, the belief base (resp.
events, intentions) is given as B ⊆ B.

3.1 Probabilistic agent-level semantics

The agent-level semantics of Can characterise the evolution
of an agent which has multiple external events to respond
and is currently pursuing a set of intentions While the agent-
level semantics allow the agent to respond to new events
even while already dealing with other events, only one agent-
level operation can be performed at each step. Such non-
deterministic choice of agent-level operation is implicit in
Can semantics.Herewe formalise and express it as a function
as follows where we denote the set of agent-level rules as
A = {Aevent , Astep, Aupdate}:

Sao : 2Ee × 2B × 2� → A ∪ {⊥}

which returns a choice of agent-level operation given any
agent-level configuration 〈Ee,B, �〉 and ⊥ stands for no
applicable rules available.

In practice, a common approach of selecting an agent-
level operation is often done in deterministic fashion such
as incorporating an external event if any before selecting any
intention to execute a step if possible. However, wemay need
to choose an agent-level operation from a distribution. For
example, it may be better for the agent tomainly incorporate
external events as intentions at the early operation stage and
tomainly progress existing intentions at later stage. To allow
this we sample agent-level operations based on a probability
distribution, i.e. with the following selection function:

S p
ao : 2Ee × 2B × 2� → Dist(A ∪ {⊥})

The probability of ⊥ of any distribution μ ∈ Dist(A ∪
{⊥}) is either μ(⊥) = 0 (agent-level operation(s) available.)
or μ(⊥) = 1 (no agent-level operation(s) available). Using
S p
ao, we will define probabilistic rules for actual execution of

agent-level operations in the next sections.
We will next detail how an agent decides which event or

intention should be selected when a given agent-level opera-
tion is selected (according to the distribution from selection
function S p

ao). The details of how these functions are imple-
mented are given later on in Sect. 4.4.

3.1.1 Probabilistic event adoption

BDI agents operate by continuously handling external events
that represent tasks originating from the external environ-
ment.

To respond to these events, an agent selects an external
event (e ∈ Ee) and adopts it in the intention set (� ∪ {e}),
using rule Aevent

Aevent
e ∈ Ee

〈Ee,B, �〉 ⇒ 〈
Ee \ {e},B, � ∪ {e}〉

There may be multiple pending external events, due to
different requests from the environment, and it is not clear
which event should be selected: the rule above picking any
waiting event. In practice, we want more control over the
event that is selected as different events may be more or
less urgent. Many agent implementations, going against the
semantics, choose events using an event selection functionSe

that is customised to account for priorities and is formalised
in the following form:

Se : 2B × 2E
e → Ee ∪ {⊥}

Given a belief base and a set of external events it returns an
event or⊥, i.e. no requested event present. In otherwords, the

123

Quantitative modelling and analysis of BDI agents 349

agent always takes an event if one exists the agent. We also
note that the belief base is needed to provide relevant infor-
mation (e.g. priority) for the agent to make more informed
event selection decisions.

To allow non-strict orderings we sample events based on a
probability distribution, i.e.with the probabilistic event selec-
tion function:

S p
e : 2B × 2E

e → Dist

(

Ee ∪ {⊥}
)

Using S p
e and S p

ao (which defines probability of selecting
rule Aevent), we can define a probabilistic Aevent rule:

Ap
event

S p
ao(Ee,B, �) = η η(Aevent) = p1

S p
e (B, Ee) = μ1 e ∈ Ee μ1(e) = p′

1

〈Ee,B, �〉 ⇒p1·p′
1

〈Ee \ {e},B, � ∪ {e}〉

The rule Ap
event says that if the probability of performing

event selection at this step is p1 and the probability of select-
ing a pending external event is p′

1, then the probability of
selecting this event at this step is p1 · p′

1. When no external
event is available (i.e. S p

e (B, Ee) = μ1 and μ1(⊥) = 0),
Ap
event is not applicable.

3.1.2 Probabilistic intention progression

Every time an agent adopts an external event a new intention
is created. As agents should adopt events to stay reactive if
one exists, we end up with a set of intentions competing for
the agent’s attention. As Can agents are single-threaded, at
most one intention can be executed each agent step in an
interleaved manner. If an agent decides to work on intentions
(rather than adopt new events), the agent must make a choice:
out of the set of progressable intentions, which should be
progressed? In standard Can this is captured by

Astep

P ∈ �
〈B, P〉 → 〈B′, P ′〉

〈Ee,B, �〉 ⇒ 〈Ee,B′, (� \ {P}) ∪ {P ′}〉
This rule non-deterministically progresses any intention (that
can be progressed) with respect to the intention level rules
in Fig. 2b.

The precondition states that P must be an intention but
does not control which. If we want more control, we can add
an intention selection function as follows:

Si = 2B × 2� → � ∪ {⊥}

As before, this function returns a fixed intention, or ⊥ if
no intention is present in the intention set (i.e. � = ∅). We
note that the function Si , by definition, includes the set of all
possible stages of each intention as every step of an intention

is itself a different intention. To efficiently construct such
an function, however, we often treat different stages of an
intention as the same intention. In fact, we decide to link
each intention with the related external event as intentions
ultimately address external events to construct this function
(detailed in Sect. 4). As such, regardless of how an inten-
tion evolves, it is treated as the same intention. Similar to
event selection, the key component of beliefs in the function
domain is to provide domain-specific information of inten-
tions to aid customised selection.

Due to the need to choose intentions from a distribution,
weprovide the following function to allow intention selection
from a distribution:

S p
i = 2B × 2� → Dist

(
� ∪ {⊥})

The agent-level transitions of Astep depends on the
intention-level transitions and we need to account for this
in the transition probabilities. To have a probabilistic agent-
level rule Astep, we assume, for a chosen progressable
intention P ∈ �, 〈B, P〉 →p′ 〈B′, P ′〉 holds, for example, if
a plan selection for the given intention P is required based on
select P . The detailed probabilistic intention-level semantics
will be given Sect. 3.2.

The probabilistic rule for intention selection is

Ap
step

S p
ao(Ee,B, �) = η η(Astep) = p2

P ∈ � S p
i (B, �) = μ2 μ2(P) = p′

2〈B, P〉 →p′′
2

〈B′, P ′〉
〈Ee,B, �〉 ⇒p2·p′

2·p′′
2

〈Ee,B′, �′〉

where �′ = (� \ {P}) ∪ {P ′}. Rule Ap
step says that if the

probability of performing intention selection at this step is
p2, the probability of selecting intention P is p′

2, and the
probability of progressing it to P ′′

2 , then the probability of
selecting and progressing intention P to P ′ at this step is
p2 · p′

2 · p′′
2 .

3.1.3 Probabilistic intention update

The final agent-level rule Aupdate drops any unprogressable
intention from the intention set.

Aupdate
P ∈ � 〈B, P〉 �

〈Ee,B, �〉 ⇒ 〈Ee,B, � \ {P}〉

Same as rule Astep, rule Aupdate also requires the same
distribution S p

i to allow intention selection. Unlike Astep,
however, Aupdate depends on the intention-level transitions
which has a default probability 1, namely 〈B, P〉 �1. To
have a probabilistic agent-level rule Aupdate, we present the

123

350 B. Archibald et al.

following probabilistic rule for intention selection.

Ap
update

S p
ao(Ee,B, �) = η η(Aupdate) = p3
S p
i (B, �) = μ3 P ∈ �

μ(P) = p′
3 〈B, P〉 �1

〈Ee,B, �〉 ⇒p3·p′
3

〈Ee,B, � \ {P}〉

The new rule Ap
update says that if the probability of updat-

ing intention selection at this step is p3, the probability of
selecting an unprogressable intention P is p′

3, then the prob-
ability of selecting and removing it from the intention set at
this step is p3 · p′

3.
Finally, when there is no agent-level operation available,

we provide a default idle rule that transitions the agent to
itself. This is required as DTMCs have must always have
an outgoing edge probabilities that sum to 1. This allows
for verification using probabilistic model checking tools
(in Sect. 4.5). The self-transition rule is

Ap
idle

S p
ao(Ee,B, �) = η η(⊥) = 1

〈Ee,B, �〉 ⇒1 〈Ee,B, �〉

3.2 Probabilistic intention-level semantics

Figure2b gives rules for evolving any single intention and
each rule is either defined in either deterministic (e.g. rule
act) or non-deterministic nature (e.g. rule select). Though
most of deterministic rules are indeed expected and appro-
priate such as progressing a sequence of programs one by
one, the rule for action execution may have uncertain out-
comes (i.e. the effects on external environment), which may
need probabilistic treatment. Similarly, we naturally extend
non-deterministic rules such as plan selection select to prob-
abilistic setting based on agent-specific information such as
preference.

3.2.1 Probabilistic action outcomes

Agents execute actions that both interact with an external
environment (e.g. pick up an object), and in-turn revise the
internal belief base (e.g. the agent believes it holds the object).
Recall that action execution is specified in Can as follows:

act
act : ϕ ← 〈φ−, φ+〉 B � ϕ

〈B, act〉 → 〈(B \ φ− ∪ φ+), nil〉
This states that an action applies only if the precondition
ϕ holds, and the outcome is to update the belief base by
adding and removing the belief atoms specified by φ− and
φ+, respectively. Therefore, the action outcome is implicitly
made deterministically by function

Sa : � → 2B × 2B

Given an action, it returns a product of set of added and
deleted atoms

In practice, we know the outcomes of an action are uncer-
tain (e.g. due to actuatormalfunctions). For example, an agent
may execute an action to pick up an object but fail to do so
because a robotic arm fails. In this case, updating the beliefs
that an object is held can lead to misalignment between the
true environment and the agent’s representation of it. To allow
uncertain action outcomes, we can sample outcomes based
on a probability distribution, i.e. with the following action
outcome function:

S p
a : � → Dist(2B × 2B)

A probabilistic action execution is defined by

act p
S p
a (act) = μ μ(φ−, φ+) = p B � ϕ

〈B, act〉 →p 〈(B \ φ− ∪ φ+), nil〉
Importantly we do not expect programming language

implementations based on these semantics to draw action
outcomes probabilistically. Instead it is used solely for mod-
elling, which allows us to capture environmental effects in a
semantics where they are usually overlooked or ignored.

3.2.2 Probabilistic plan selection

BDI agents employ a user-provided plan library to respond
to events. Each plan has i) a triggering event defining what
event the plan can respond to, ii) a pre-condition defining
what beliefs must hold for the plan to apply, and iii) a plan-
body defining what steps should be taken to execute the plan.
To address a pending event originating from the external envi-
ronment, the agent retrieves a set of relevant plans, i.e. those
with a matching triggering event, as specified by Can rule

event
	 = {

ϕ : P | (e′ = ϕ ← P) ∈ � ∧ e′ = e
}

〈B, e〉 → 〈B, e : (| 	 |)〉
Given a set of relevant plans, the agent then selects an appli-
cable plan (one where the precondition is true):

select
ϕ : P ∈ 	 B |� ϕ

〈B, e : (| 	 |)〉 → 〈B, P � e : (| 	′ |)〉
where 	′ = 	 \ {ϕ : P}. If there are no applicable plans a
separate rule such as rule�⊥ in Fig. 2b propagates the failure.

Notice that the preceding select rule does not specify
which plan should be selected in case of multiple applicable
plans, i.e. it is non-deterministic. However, in many imple-
mentations, the choice is often made deterministically by a
plan selection function of the following form:

Sp : 2B × 2� → � ∪ {⊥}

123

Quantitative modelling and analysis of BDI agents 351

Given a belief base and a set of plans it returns an applicable
plan or no applicable plan (⊥).

While a common heuristic is to select the plan with the
highest order based on some characteristics (e.g. preference),
it may not lead to globally optimal behaviours due to action
side-effects. We argue that it should be possible to prioritise
plan choice based on plan characteristics, but not assume a
totally fixed ordering in order to allow exploration of non-
highest order plans that might have better properties. This is
akin to discrepancy search techniques [22] to go against the
heuristic, and is particularly useful for declarative goals (e.g.
rules Ginit and G� in Fig. 2b) to avoid always repeating the
same plan.

To support non-strict orderings, we can sample the choice
of applicable plans based on a probability distribution, i.e.
with the following plan selection function:

S p
p : 2B × 2� → Dist(� ∪ {⊥})

Using S p
p , a probabilistic select rule is defined by

select p

S p
p (B,) = μ μ(⊥) = 0

ϕ : P ∈ 	 μ(ϕ : P) = p

〈B, e : (| 	 |)〉 →p 〈B, P � e : (| 	′ |)〉

where 	′ = 	\{ϕ : P} and μ is the probability distri-
bution returned from S p

p such that any non-relevant and
non-applicable plans are assigned the probability 0.

Trialling different distributions is possible by changingS p
p

which could, for example, be extracted from historical data.
With our approach, it allows quantifying exact probabilistic
effects of different S p

p choices.

3.2.3 Probabilistic concurrency

Can also supports the execution of concurrent programs.
To execute a concurrent plan-body program, the agent can
execute either part non-deterministically given in following
two cases:

‖1
〈B, P1〉 → 〈B′, P ′

1〉
〈B, P1‖P2〉 → 〈B′, P ′

1‖P2〉

‖2
〈B, P2〉 → 〈B′, P ′

2〉
〈B, P1‖P2〉 → 〈B′, P1‖P ′

2〉
To choose the part of concurrent programs to progress, we
may also require flexibility to choose from a distribution by
a selection function for a concurrent program P1‖P2 as fol-
lows:

S p
c : 2B × P → Dist(P ∪ {⊥})

where P ⊆ � is all possible plan-body programs, Dist(P ∪
{⊥})) is the set of discrete probability distributions over all
possible plan-body programs (or a delta distribution to ⊥ if
no part of a concurrent program can be progressed).

We note that both rules ‖1 and ‖2 imply that the evolution
of a concurrent program depends on another intention-level
transition of either part of concurrent program andwe need to
account for this in the transition probabilities. To have a prob-
abilistic intention-level transition for a concurrent program,
we assume, for a chosen progressable intention Pi ∈ P ,
〈B, Pi 〉 →p′

i
〈B′, P ′

i 〉 holds where i ∈ {1, 2}, for example, if
a plan selection for the given intention Pi is required based
on select P . UsingS p

c we can define a probabilistic extension
for rules ‖1 and ‖2:

‖p
1

S p
c (B, P1‖P2) = μ μ(⊥) = 0

μ(P1) = p1 〈B, P1〉 →p′
1

〈B′, P ′
1〉

〈B, P1‖P2〉 →p1·p′
1

〈B, P ′
1‖P2〉

‖p
2

S p
c (B, P1‖P2) = μ μ(⊥) = 0

μ(P2) = p2 〈B, P2〉 →p′
2

〈B′, P ′
2〉

〈B, P1‖P2〉 →p2·p′
2

〈B, P1‖P ′
2〉

whereμ is the probability distribution returned fromS p
c such

that where
∑

i pi · p′
i = 1, pi , p′

i ∈ [0, 1], and i ∈ {1, 2}.
Finally, we reiterate that when there is no applicable

plan available to select or neither of two concurrent pro-
grams is progressable, a separate rule of failure recovery (�⊥
in Fig. 2b)will propagate the failure to continue the transition.
The rest of intention-level rules in Fig. 2b are automatically
extended with a probability 1. The full rule set for the prob-
abilistic extension of the Can semantics is in Fig. 15.

3.3 Constructing selection functions

The probabilistic Can semantic rules either transition with
probability 1 or through probability distributions. These
probability distributions are abstract, and the rules them-
selves do not specify how to construct them in practice. In
this section, we present and extended syntax for Can pro-
grams that allows agent programmers to define the specific
distributions to be used.

3.3.1 Situation value functions

We introduce additional syntax for relevant agent programs
(e.g. plans) that, through a process of normalisation, deter-
mines the correct probabilistic distributions. Following [14],
we annotate programs using situation value description func-
tions θ : 2B → R≥0. Intuitively these map the current
situation, as described by the current beliefs, to a real valued

123

352 B. Archibald et al.

number. We allow users to define θ functions as folds/aggre-
gation functions as follows:

〈d0, {(ϕ1, d1), · · · , (ϕn, dn)}, f 〉

where d0 is a default value and values di are aggregated using
function f (e.g. sum) whenever B |� ϕi holds.

In general, situation value functions are dynamic in that
they respond based on the current set of beliefs representing
the current situation the agent is in. A special case are static
values, e.g. θ = 〈0, {(true, di)},+〉 that do not depend on
the current beliefs of the agent. For ease of notation, we allow
users to denote these simply as the value, e.g. θ = di , rather
than giving the full function.

Situation value functions can then be attached to the fol-
lowing agent programs to determine the correct probabilistic
selection function.

• Plans e : ϕ ← P[θ]
• Concurrency P1[θ1] ‖ P2[θ2]
• Events and Intentions e[θ]

Intuitively, plans with a higher (current) θ value should
be selected more often. Concurrency annotations determine
which branch should be preferred, while the event annota-
tions determine which event should be adopted first (given a

set of possible events). Because intentions ultimately address
external events,wemeasure the situation value of an intention
by considering the value of its related external event, which
suffices for our smart manufacturing example in Sect. 4.

Finally, to construct the probabilistic selection function
for agent-level operations, we add three keywords Aevent ,
Astep, and Aupdate (mirroring the agent-level rule names)
that allow annotations with a situation value function, i.e.
Aevent [θ1], Astep[θ2], and Aupdate[θ3]. The syntax is shown
as part of agent configurations in lines 20 to 22 in Listing 2.
Each situation value function describes the relative weight to
selecting each agent-level rule. As usual, the resulting prob-
abilities to select each agent-level rule are then determined
through normalisation.

Listing (2) Agent design of a smart manufacturing example.
1 // Plans
2 e_product1 : true ← goal(success1 ,e_process_product1 ,failure1)
3 e_process_product1 : ϕ11 ← wrap_standard1; move_product_standard1 [θ11]
4 e_process_product1 : ϕ12 ← wrap_premium1; move_product_premium1 [θ12]
5 e_product2 : true ← goal(success2 ,e_process_product2 ,failure2)
6 e_process_product2 : ϕ21 ← wrap_standard2; move_product_standard2 [θ21]
7 e_process_product2 : ϕ22 ← wrap_premium2; move_product_premium2 [θ22]
8 // External events
9 e_product1 [θ13]

10 e_product2 [θ23]
11 // Action descriptions
12 wrap_standard1 = true ← [〈φ−

1 = ∅, φ+
1 = {product 1 packed →�〉} 1]

13 move_product_standard1 = product_1_packed ← [〈φ−
2 = ∅, φ+

2 = {success1 →�〉} 0.9,
14 wrap_premium1 = true ← [〈φ−

1 = ∅, φ+
1 = {product 1 packed →�〉} 1]

15 move_product_premium1 = product_1_packed ← [〈φ−
2 = ∅, φ+

2 = {success1 →�〉} 1]
16 wrap_standard2 = true ← [〈φ−

3 = ∅, φ+
3 = {product 2 packed →�〉} 1]

17 move_product_standard2 = product_2_packed ←
[〈φ−

4 = ∅, φ+
4 = {success2 →�〉} 0.9, 〈φ−

4 = ∅, φ+
4 = {failure2 →�〉} 0.1]

18 wrap_premium2 = true ← [〈φ−
3 = ∅, φ+

3 = {product 2 packed →�〉} 1]
19 move_product_premium2 = product_2_packed ← [〈φ−

4 = ∅, φ+
4 = {success1 →�〉} 1]

20 Aevent [θ31]
21 Astep [θ32]
22 Aupdate [θ33]

3.3.2 Selection functions

We now describe how the selection functions are constructed
given the situation value functions. We give the mapping for
plan selection as an example, and the others follow similarly.
We define

app(B,) =
{

P ∈ 	 | P = ϕ : Q, B |� ϕ

}

as a filter that chooses the applicable plans given a specific
belief set B and set of plans 	. Here we use Q to indicate a

123

Quantitative modelling and analysis of BDI agents 353

plan-body. The plan selection function is then defined as

S p
p (B,) =

{
μ if app(B,) �= ∅
[⊥ �→ 1] otherwise

μ =
[

P1 �→ θ1(B)

N
. . . , Pn �→ θn(B)

N
,⊥ �→ 0

]

with Pi∈{1,...,n} ∈ app(B,) and N = ∑n
i=1 θi (B). That

is, for a non-empty set of applicable plans we normalise the
situation values into the range 0 ≤ p ≤ 1 allowing them to
be used as a probability distribution. If there are no applicable
plans, or the plan set is empty, we select ⊥ with probability
1, allowing different Can rules (e.g. failure recovery �⊥
in Fig. 2b) to apply.

3.3.3 Action outcomes

Action outcomes are statically defined based on estimates
of environmental effects at design time. We attach the static
situation value functions, i.e. values, to each effect using the
following syntax:

act = ϕ ← [〈φ−
1 , φ+

1 〉[θ1], . . . , 〈φ−
n , φ+

n 〉[θn]]

As before, the specific probabilities are determined through
normalisation.

Finally, we note that assigning static values to action
outcomes has been considered extensively in the planning
literature and has led to, e.g. probabilistic planning domain
definition languages (PPDDL) [23], that consider multiple
outcomes with associated probabilities (e.g. estimated from
historical data).

4 Evaluation

We demonstrate, using a smart manufacturing example and
existing probabilistic model checking tools, how to quantita-
tively analyse BDI agent programs. Specifically, we evaluate
our probabilistic plan/event/intention selection against com-
mon strategies such as always selecting the most preferred
plan. The results are promising, with the intention comple-
tion probability using probabilistic distributions being 97%
higher than some strictly ordered plan and intention selection
strategies.

We build on previous quantitative analysis, for the same
example [20], by extending the experiments to include new
agent-level operation selection strategies.

The models are freely available in BigraphER format
online.1 For quantitative analysis we use PRISM to check

1 https://bitbucket.org/uog-bigraph/sosym-sefm21-special-issues/
src/master/.

properties (through bigraph patterns) by importing the
labelledDTMCproduced byBigraphER.Whilewe only give
details of a single case study, users of the executable seman-
tics can employ BigraphER to “run” models with different
settings, e.g. external events, plan libraries, customised situ-
ation value functions.

4.1 Smart manufacturing example

We consider a robotic packaging scenario, extended from
[24], where a robot packs products and moves them to a
storage area. Products have specific temperatures and must
be packed in a suitable wrapping bag to prevent decay. If the
product stays on the production line too long, the temperature
increases and it is spoiled and lost. Given multiple waiting
products (i.e. events to trigger the operation) on the produc-
tion line, the robot must choose which to handle first (event
selection). Once chosen, the robot must then decide which
wrapping to use: either premium or standard (plan selection).
Premium wrapping is expensive but always stops product
decay and never breaks. On the other hand, standard wrap-
ping is cheap, only works if the product temperature remains
low, and has a risk of breaking (a negative action outcome).
The (partially-executed) plan-bodies for the selected plans
become intentions that handle the products. Among all cur-
rent intentions, the agent also needs to decidewhich intention
to progress further, for example, moving to the storage once
finishing wrapping (intention selection)

Complexity arises from the following factors: (1) losses
avoided dependonwhen a product is packed, (2)when a prod-
uct is packed determines which wrappings are applicable;
earlier packing means cheaper bags, (3) cheaper wrappings
introduce uncertainty as they may break. A formal model
of the agent system allows us to quantitatively reason about
the robot’s behaviours under this uncertainty and use these
results as evidence, e.g. for regulatory certification. Further-
more, it can help improve the design of the robot, e.g. using
a standard wrapping as often possible but within tolerable
failure threshold.

4.2 Agent design

We consider a simplified scenario with two products that
are initially present on the production line, i.e. there are no
dynamic events. The agent program is given in Listing 2 and
we assume beliefs are in a propositional logic with numerical
comparisons.

Products awaiting processing are captured by external
events shown in lines 9 and 10, e.g. e_product1 with
its situation value function θ13 (explained below). The
agent responds to the events using a declarative goal on
line 2 that states it wants to achieve the state success1
(i.e. wrapped and moved) through addressing the (internal)

123

https://bitbucket.org/uog-bigraph/sosym-sefm21-special-issues/src/master/
https://bitbucket.org/uog-bigraph/sosym-sefm21-special-issues/src/master/

354 B. Archibald et al.

event e_process_product1; failing if failure1 (i.e.
dropped or decayed) ever becomes true. Two plans (in lines
3 and 4), which represent the different wrappings, can han-
dle the event e_process_product1 each with different
situation value functions. Event e_product2 is handled in
a similar way (in line 5–7).

The description of actions are given from lines 12 to 19.
There is a probabilistic outcome for the move_product
_standard1 action in line 13, such that it has a 10%chance
of causing failure1 by dropping the product accidentally,
else it succeeds (adding success1 to the beliefs), whereas
move_product_premium1 action always succeeds in
line 15. In Sect. 4.5 we investigate how varying action suc-
cess probability effects the overall outcomes in the dedicated
section.

To construct probabilistic distributions, we encode the
(discrete) temporal information for progress and deadline.
Progress determines how far (in terms of agent steps) an
agent is through an intention, while deadline determines how
many steps we can make before the product spoils. Mirror-
ing implementations, we update timings in the background,
without executing an explicit action. In this case, the progress
increases whenever a specific intention is stepped, whereas
deadline decreases after a step of any intention. That is, we
use agent time (i.e. agent stepswhich is implicit in the seman-
tics) rather than real-time (as this requires a secondary clock)
to remain agnostic to the actual time required for each agent
step which can be difficult to anticipate at design stage due
to the delay or variation in real process deployed on the hard-
ware.

Figure4a gives the specifications for quantitative reason-
ing. A short commentary is as follows. de1 = 10 and
de2 = 14 are the initial deadlines of two external events:
e_product1 and e_product2. The precondition ϕ11 =
de1 ≥ 3 indicates whether de1 is greater than or equal
to 3. The situation value function θ11 = 〈1, {ϕ11, 1}, sum〉
indicates that if ϕ11 holds, then θ11(ϕ11) = 1 + 1 = 2.
The situation value description θ13 for the external event
e_product1 is defined as a function (de1 + pr1)−3. Intu-
itively, if de1+ pr1 is smaller relative to other products, then
it has been progressed less and the deadline is approach-
ing, so it is more urgent. Finally, we have the situation value
functions for the agent-level operations so that we ensure the

highest weighting for the rule Aevent when pr1+ pr2 is small
(i.e. relatively low overall progress). When pr1 + pr2 gets
bigger, the power of y in (4 − y) · (pr1 + pr2)y ensures the
rule Astep and Aupdate to have a higher weight than Aevent ,
and Aupdate higher than Astep as well. Importantly, all of
deadline values and the choice of situation value descrip-
tions are made by the agent designer, i.e. (de1 + pr1)−3 was
their choice. Our approach enables the analysis of alternative
functions quantitatively, before deploying the agent.

4.3 Selection strategies

We experiment with multiple selection strategies used by the
agent (in Listing 2), including: agent-level operation selec-
tion, event/intention selection, and plan selection, which are
standard in work e.g. [7]. A summary is given in Table 1,
and we are particularly interested in selection strategies that
use dynamic distributions based on domain-specific informa-
tion (excluding uniform random selection strategies). A short
commentary for each selection mechanism is given next.

4.3.1 Agent-level operation selection strategies

At each agent step an agent can either: incorporate any
pending external events through Can rule Aevent , select an
intention and execute a step through Can rule Astep (accord-
ing to intention-level semantics), or remove unprogressable
intentions from intention set using rule Aupdate.

Here, agent-level operation selection strategies control
which agent-level operation will be applied, e.g. select a new
event or progress an existing intention. In our smart man-
ufacturing example, this affects when a waiting product is
initially handled, and how long it takes to pack a product. We
use twodifferent selection strategies: theSIP (Select In Prior-
ity) strategy selects agent-level operations in a priority order:
pending events are adopted first, then intentions are pro-
gressed, finally when there are no events/intentions it finally
removes them from the intention set. The ProD (Progress
Distribution) strategy instead selects an agent-level opera-
tion from a dynamic probability distribution based on the
current progress of the agent. Initially we bias towards adopt-
ing events (to give the agent work to do), and, as the agent
progresses, we increase the probability of progressing inten-

Fig. 4 Agent design employing the syntax of Sect. 2.1 with the situation value functions

123

Quantitative modelling and analysis of BDI agents 355

Table 1 Selection strategies

Agent-level Operation Selection Strategies (AOSS) Event and Intention Selection Strategies (EISS) Plan Selection Strategies (PSS)

SIP: Select In Priority SMU: Select Most Urgent SMP: Select Most Preferred

ProD: Progress Distribution FIFO: First-In-First-Out PreD: Preference Distribution

RR: Round-Robin

UD: Urgency Distribution

CUD: Conditioned Urgency Distribution

OCUD: Optimised Conditioned Urgency Distribution

tions instead (to finish tasks before becoming overwhelmed).
Finally, we garbage collect unprogressable intentions near
the end of a run (when there is less work to do). The func-
tions to compute this distribution are in lines 20–22 in Listing
2.

4.3.2 Event/intention and plan selection strategies

For event and intention selection, the SMU (Select Most
Urgent) strategy always selects the intention closest to the
deadline. FIFO (First-In-First-Out) and RR (Round-Robin)
are fixed orders where the former always selects the inten-
tion which arrives first and the latter selects each intention
in turn. The UD (Urgency Distribution) strategy selects
an intention by sampling from a distribution where situa-
tion value function is given by (de + pr)−3. Unlike the
UD, the CUD (Conditioned Urgency Distribution) only
deems an intention urgent if the product is not packed or
spoiled. As such, it will not select an intention in which
the product is packed when there is another intention whose
product is not packed. Finally, OCUD (Optimised Condi-
tioned Urgency Distribution) selects an intention similarly
to CUD but the situation value description is revised to be
|de+ pr−steps_expected|−3, which accounts for the steps
remaining to pack a product (to avoid spoilage).

For plan selection, SMP always selects the highest
weighted plan, while PreD selects a plan by sampling distri-
bution based on preference.

4.4 Encoding in bigraphs

In this section we show how we encode agent design, prob-
abilistic agent semantics, different strategies, and logical
predicates in bigraphs. We begin with a brief introduction
to bigraphs.

4.4.1 Bigraphs

Bigraphs are a universal graph-based modelling formalism
introduced byMilner [25], with conditional, priority, param-
eterised, and probabilistic extensions [18, 26]. They have an

Fig. 5 a Example bigraph, b reaction rule, and c result after applying
(b) to (a)

algebraic and diagrammatic form, we employ mainly the lat-
ter here.

An example bigraph is in Fig. 5a. It consists of a set of
entities, e.g. A, B, drawn as (coloured) shapes.2 Entities can
be related through nesting (to arbitrary depth), e.g. the B enti-
ties inside A. Entities can also be related through hyperlinks
(permitting any-to-any links rather than just one-to-one as
is usual), such as the green link between the B and C enti-
ties. Entities have a fixed number of links, called the arity,
although a link can be disconnected as shown by the C entity
in Fig. 5c. The name x means this link is open and can con-
nect to other (unspecified) parts of the system. Likewise, the
filled grey rectangles denote that other (unspecified) entities

2 We often use the shape to denote the entity type to reduce the need
for excessive labelling.

123

356 B. Archibald et al.

can exist here.Dashedunfilled rectangles are regions that rep-
resent parallel parts of the system: that is, these two regions
can, but do not have to, share a single parent in some larger
system model.

A bigraph represents a system at a single point in time.
To allow models to evolve over time we can specify reaction
rules of the form L � R, where L and R are bigraphs. Intu-
itively, a bigraph B evolves to B ′ by matching and rewriting
an occurrence of L in B with R. Such a reaction is indicated
with B � B ′. Given an initial bigraph and set of reaction
rules, we can derive a transition system capturing all possible
behaviours.

An example reaction rule is in Fig. 5b, which models the
disconnection of B and C and also removes the nesting of
B in A. The filled grey rectangles are called sites and repre-
sent parts of the model, below some entity, that have been
abstracted away. That is, it allows matching on an A with
multiple children.Without the site, the rulewould onlymatch
when A had a single B child. Similarly, the use of the open
name x means that the B can be connected not just to the C
but also elsewhere, in this case the other B. As B remains con-
nected to x the link remains connected in the result (likewise
if it had been C connected to x then it would remain con-
nected in the result). Reaction rules can affect both linking
and placement, as shown here with the B entity also moving
next to C.

Priority rewriting [26] permits an ordering on rules,
defined by specifying classes of rules and an ordering
between the classes. A reaction of lower priority can be
applied only when no reaction of higher priority is appli-
cable. Probabilistic bigraphs [18] permit rules be weighted,
e.g.t1 = L1

2 � R1 andt2 = L2
1 � R2, such that if both

(and only) t1 and t2 are applicable then t1 is twice as likely
to apply as t2. We allow rule priorities, where a reaction of
lower priority can be applied only if no reaction of higher
priority is applicable. We write {r1} < {r2} to denote when
sets of rules have higher priority.

The encodingof probabilisticCan in probabilistic bigraphs
follows directly from the encoding for the non-probabilistic
versions [19]. For example, the encoding of agent design
remains the same while there is a syntax change from -->
to -[1]-> in BigaphER for any deterministic intention-
level semantics rule that is assigned with default probability
1. Additional rules are required, and some rules must be
updated, to support different selection strategies and we

describe these changes in the coming section. Importantly,
the different strategies define a family of relatedmodels rather
than a single model with different strategy selection. This
means the same rule might appear differently, e.g. with dif-
ferent parameters, depending on the specific strategies we
are implementing.

Notation We use fonts to distinguish between Can
semantics rules, e.g. Aevent , bigraph reaction rules, e.g.
choose_a_event, and bigraph entities, e.g. Aevent.

4.4.2 Encoding agent-level operation selection strategies

To encode the selection of agent-level operation, we add the
following new reaction rules:

{choose_a_update, choose_a_step,

choose_a_event}

These reaction rules determine the next agent-level oper-
ation e.g. if choose_a_event (illustrated in Fig. 6) is
applied, then the agent-level rule Aevent is applied at the next
step (Fig. 7).

Priorities can be used to implement selection strategies
such asSIP, which selects agent operations in a priority order.
That is, we can assign rule priorities:

{choose_a_update} < {choose_a_step}
< {choose_a_event}

To encode the ProD strategy, which selects an agent-
level operation rule from a dynamic distribution, we employ
parameterised reactions that define a family of rules. For
example, reactionr(k)generates a set of rulesr(k1),r(k2), . . .
for all values of k. We then define the ProD strategy by:

{choose_a_event(pr1, pr2),

choose_a_step(pr1, pr2),

choose_a_update(pr1, pr2)}

where pr1 and pr2 denote the steps being applied to events
e_product1 and e_product2, respectively. Recall in
Sect. 4.3.1, we have the situation value of selecting each
agent-level rule (using the same syntax as lines 20–22 in

Fig. 6 Reaction rule
choose_a_event

123

Quantitative modelling and analysis of BDI agents 357

Fig. 7 Reaction rule a_event adds an event to the intention set if it matches token Aevent. The dashed arrows (called the instantiation map in
bigraphs) forces the site in the right hand side to be the copy of the site on the left

Fig. 8 Reaction rule choose_a_event(pr1, pr2) where we use parameterised entities, e.g. Progress(pr1), to represent the steps of an event
which has been progressed and θ1 = 3 · (pr1 + pr2)

Listing 2):

Aevent [θ1], Astep[θ2], Aupdate[θ3]

where the situation value function θi is (4 − i) · (pr1 +
pr2)i where mi is a positive number, i ∈ {1, 2, 3}.
Therefore, reaction rule choose_a_event has weight
3 · (pr1 + pr2), choose_a_step 2 · (pr1 + pr2)2, and
choose_a_update (pr1+ pr2)3. As an example, reaction
rule choose_a_event(pr1, pr2) is illustrated in Fig. 8.
This is a modification of Fig. 6 including the progress step of
two products.

The weights are normalised (automatically by Bigra-
phER) based onwhich reaction rules are applicable to a given
(bigraphical encoding of) agent state. For example, if pr1 =
0 (e_product1 is not adopted in the intention set) and
pr2 = 1 (e_product2 is adopted in the intention set and
ready for being progressed), both choose_a_event and
choose_a_event are applicable. Thenwe have theweight
of rule choose_a_event is 3 and choose_a_step is 2.
After normalisation, the final probability of selecting cor-
responding Can rule Aevent is 0.6, while the probability of
selecting the corresponding Astep is 0.4. Such a distribution
indicates that at this early stage, the agent is more likely
to adopt any pending event over progressing the existing
intention. Importantly, these reaction rules are all in the same
priority class (in the bigraph models) meaning any could be
applied at each step, and the probabilities indicate relative
likelihoods.

4.4.3 Encoding event/intention and plan selection
strategies

To encode the event/intention selection strategies, wemodify
the reaction rules for corresponding to agent-level rules of
Aevent , Astep, and Aupdate from our previous work [19].

The first event/intention selection strategy is to always
select the most urgent (SMU). To encode this, we can con-
tinue to employ the parameterised reaction. Unlike using
parameters for obtaining the weight in ProD previously,
parameter is used to control whether the first event or
its related intention should be selected. For example, the
parameterised reaction rule a_event(1) only select the
e_product1, i.e. parameter 1 corresponds to the product
identifier number. Since we know, in Listing 2, that the dead-
line of e_product1 is nearer (hence more urgent) than
e_product2We can have the following priority to imple-
ment the SMU strategy:

{a_event(2), a_step(2), a_update(2)}
< {a_event(1), a_step(1), a_update(1)}

Similarly, we can have the following priority reactions for
First-In-First-Out (FIFO) event/intention selection strategy
under the assumption that e_product2 arrives earlier than
e_product1 (otherwise it will be same as SMU):

{a_event(1), a_step(1), a_update(1)}
< {a_event(2), a_step(2), a_update(2)}

123

358 B. Archibald et al.

To encode the Round-Robin (RR) strategy, we also use
some auxiliary token to control the order of selection. For
instance, we have a_step to select an intention which is
linked with an entity Pointer (a token showing that now it
should be progressed). In our example with two intentions
(corresponding to two products), the token Pointer will be
moved to one intention after the other one is processed one
step (through rule a_step). Illustrated in Fig. 9, the execu-
tion of an intention linked through x1 with an event labelled
with Pointer will result in moving the Pointer to another
event (linked through x2) and vice versa.

To encode urgency distribution (UD), we have the follow-
ing set of parameterised reactions for agent-level rules:

{a_event(pr , de), a_step(pr , de),

a_update(pr , de)}

where pr and de denote how many steps have been pro-
gressed and are left for an event or its related intention. Each
rule has theweight of 1/(pr+de)3 (according to Sect. 4.3.2).

Conditioned urgency distribution (CUD) is same as UD,
but only deems an intention urgent if the product is not packed
or spoiled. To encode it, we employ conditional bigraphs
[26] that allow application conditions to specify contextual
requirements within the bigraphical system. As such, we
only need to add the contextual requirement to reaction rule
a_step(pr , de) (illustrated in Fig. 10).

The optimised conditioned urgency distribution (OCUD)
is the same as (CUD) but with weight |de + pr −
steps_expected|−3, where step_expected accounts for the
number of steps that is expected to pack a product (to avoid
spoilage). This value can be obtained through a simulation
on one single product in BigraphER.

Finally, the similar priority (resp. parameter) approach can
be used to encode the plan selection strategy SMP which
selects the highest weighted plan and ProD which selects a
plan by sampling distribution based on preference.

4.4.4 Encoding probabilistic action outcomes

To encode probabilistic outcomes, we extend the repre-
sentation of action with a set of outcomes. Each out-
come is pre-assigned with a parameterised bigraph entity
EffWeight(n). Figure11 shows the bigraph representation

of action move_product_standard1 from line 13 in
Listing 2. To execute an action with probabilistic outcomes,
we can encode intention-level rule act p (in Sect. 3.2.1) as a
parameterised reaction illustrated in Fig. 12 with transition
weight n based on the given EffWeight(n). This is then nor-
malised to a probability by BigraphER.

4.4.5 Intention success and failure

Can does not indicate whether an intention has completed
successfully or with a failure. This is, Aupdate (Fig. 2a)
removes a completed intention from the intention base,
regardless if it had completed successfully (was the nil pro-
gram) or if it could not make any further progress (failed).
Following previous work [19] (which encodes standard Can
semantics), we overcome this limitation in two ways: 1. we
add identifiers to each intention using the event name that
generated the intention (not possible in Can semantics); 2.
We encode the Can rule Aupdate as two different bigraph
reaction rules: one handling a successfully completed inten-
tion, and the other a failed intention. This allows the rules to
add additional entities to track intention state (either Success
or Failure).

To add the labels to output DTMC states, we use two
bigraph patterns, for success and failure, as shown in
in Fig. 13. Once states are labelled, can use these in an
eventually PCTL formulae for PRISM. This gives a general
approach to reason about each intention individually, or a
combination of intentions (through conjugation). For exam-
ple, we use the formula P=?F[S(1) ∧ S(2)] in our packing
use-case, which computes the probability that both products
are processed successfully.

4.5 Analysis

Table 2 gives the probability of processing the products
successfully or with a failure, under different agent-level
operation selection, and event/intention selection strategies,
with SMP chosen for plan selection. We use the shorthand
(X1,Y2) to stand for P=?F[X(1)∧Y (2)] where X and Y are
drawn from {S, F} denoting success or failure.

We see the necessity for good event/intention selection,
with the first three combinations never successfully pro-
cessing both products, i.e. (S1, S2). Using UD, it starts to

Fig. 9 Reaction rule a_step encodes Round-Robin intention selection via a token entity Pointer that moves after each step. Entity Intent,
highlighted in red, denotes that this intention will be progressed through intention-level rules

123

Quantitative modelling and analysis of BDI agents 359

Fig. 10 Conditional reaction rule a_step(pr , de) for CUD strategy
with θ = 1/(pr + de)3. The symbol − indicates a negative condition
i.e. that the bigraph of the condition should not appear/be matched.
Packed and Spoiled are bigraphs representing the unwanted product

statues. The ↓ means we do not want these states to appear in (any of)
the sites. The red highlighted Intent on the right hand side means this
intention will be progressed by further rules

Fig. 11 Bigraph representation
of actions (Act) with a set of
outcomes (Effect) each one
containing a parameterised
entity (EffWeight(n)) indicating
its weight

Fig. 12 Bigraph rule foraction p executing an actionwith an effect hav-
ing the parameterised entity (EffWeight(n)). The dashed arrows (called
the instantiationmap in bigraphs) forces the site in the right hand side to

be the copy of the site on the left. The green circle stands the bigraph of
the applicability of pre-condition of this action and the red highlighted
entity Act implies that this action is to be executed

have limited success (p = 0.06 for SIP and p = 0.05 for
ProD). With UD, the chance of succeeding with product 1
increases to more than 50%, whereas the failure of prod-
uct 2 is nearly 72%. This indicates the weighting function is
skewed toward product 1 at the detriment of product 2, lead-
ing to the improvedCUD strategy. This is a key advantage of
our approach: discovering potential pitfalls and trialling new
strategies without changing the underlying agent programs
and semantics. Similar reasoning, that now product 2 was
succeeding more often under strategy OCUD being trialled
with extremely good success rates, e.g. p = 0.97. We should
never expect the probability of (S1, S2)= 1 due to the action
outcome uncertainty (e.g. the wrapping bag breaks).

We also see a better performance of SIP strategy for
agent-level operation selection. For example, the probability
of successfully processing both products with the last three
event/intention strategies under ProD is consistently lower
(though by margin) than those under SIP. In general, any
success rate improvement, even marginally, should be used

Fig. 13 Bigraph patterns for checking intention success and failure.
a S(i): product i completes successfully. b F(i): product i completes
with failure

123

360 B. Archibald et al.

Table 2 Probability of (product 1, product 2) completing success-
fully/with failure for different agent-level operation selection and
event/intention selection strategies using the SMP (Select Most Pref-
ered) plan selection

EISS
SMU FIFO RR

A
O
S
S

S
I
P

(S1,S2)
0

(S1,F2)
0.9

(S1,S2)
0

(S1,F2)
0

(S1,S2)
0

(S1,F2)
0

(F1,S2)
0

(F1, F2)
0.1

(F1,S2)
0.9

(F1,F2)
0.1

(F1,S2)
1

(F1,F2)
0

P
ro
D

(S1,S2)
0

(S1,F2)
0.9

(S1,S2)
0

(S1,F2)
0

(S1,S2)
0

(S1,F2)
0.1

(F1,S2)
0

(F1,F2)
0.1

(F1,S2)
0.9

(F1,F2)
0.1

(F1,S2)
0.1

(F1,F2)
0.8

UD CUD OCUD

A
O
S
S

S
I
P

(S1,S2)
0.06

(S1,F2)
0.45

(S1,S2)
0.51

(S1,F2)
0

(S1,S2)
0.97

(S1,F2)
0

(F1,S2)
0.22

(F1,F2)
0.27

(F1,S2)
0.48

(F1,F2)
0.01

(F1,S2)
0.03

(F1,F2)
0

P
ro
D

(S1,S2)
0.05

(S1,F2)
0.47

(S1,S2)
0.48

(S1,F2)
0.04

(S1,S2)
0.9

(S1,F2)
0.05

(F1,S2)
0.17

(F1,F2)
0.31

(F1,S2)
0.46

(F1,F2)
0.02

(F1,S2)
0.04

(F1,F2)
0.01

Remaining abbreviations are in Table 1

as it can result in great savings—particularly in large scale
processes, e.g. an expected two-product successful behaviour
tending to occur 97% of the time instead of 90%. It shows
that it is better to get the event adoption done in the beginning
of the agent operation, updating unprogressable intention in
the end, and the usual intention progress in the middle. In
particular, ProD has a significantly detrimental effect when
having RR for plan selection, with p = 0.8 for (S1, S2).
The reason is that under ProD the agent may still continue
to progress the same event just after it has been adopted, or
remove an unprogressable intention just after progressing it.
Both of the situations can lead to the other product being left
there too long and becoming spoiled before it needs to be
packed. Interestingly, agent-level operation selection seems
to make no difference for event/intention selection strategies
(i.e. SMU and FIFO).

Table 3 gives the probability of processing the products
either successfully or with a failure, under different event/in-
tention selection strategies and plan selection strategies, but
with SIP for agent-level operation selection listed in Table
1. In this example, we find that plan selection has limited
effect compared to event/intention selection, but neverthe-
less positive effects, which is key to this application. This
itself is a valuable insight, and given the complexity of agent

Table 3 Probability of product 1, product 2 for the properties, e.g. (S1,
S2) with different event/intention selection strategies and plan selec-
tion strategies, and SIP (Select In Priority) for agent-level operation
selection given in Table 1

EISS
SMU FIFO RR

P
S
S

S
M
P

(S1,S2)
0

(S1,F2)
0.9

(S1,S2)
0

(S1,F2)
0

(S1,S2)
0

(S1,F2)
0

(F1,S2)
0

(F1, F2)
0.1

(F1,S2)
0.9

(F1,F2)
0.1

(F1,S2)
1

(F1,F2)
0

P
re
D

(S1,S2)
0

(S1,F2)
0.93

(S1,S2)
0

(S1,F2)
0

(S1,S2)
0

(S1,F2)
0

(F1,S2)
0

(F1,F2)
0.07

(F1,S2)
0.93

(F1,F2)
0.07

(F1,S2)
1

(F1,F2)
0

UD CUD OCUD

P
S
S

S
M
P

(S1,S2)
0.06

(S1,F2)
0.45

(S1,S2)
0.51

(S1,F2)
0

(S1,S2)
0.97

(S1,F2)
0

(F1,S2)
0.22

(F1,F2)
0.27

(F1,S2)
0.48

(F1,F2)
0.01

(F1,S2)
0.03

(F1,F2)
0

P
re
D

(S1,S2)
0.06

(S1,F2)
0.45

(S1,S2)
0.51

(S1,F2)
0

(S1,S2)
0.98

(S1,F2)
0

(F1,S2)
0.22

(F1,F2)
0.27

(F1,S2)
0.48

(F1,F2)
0.01

(F1,S2)
0.02

(F1,F2)
0

behaviours, determining this expected probability precisely,
without such a model, would be difficult. In particular, we
can see that when the event/intention selection is in a one-
by-one manner, selecting plans from a dynamic distribution
is much more useful, e.g. an expected two-product failure
behaviour tending to occur 7% of the time instead of 10%.

The effects of different action outcomes are shown in
Fig. 14 where the probability of standard wrapping failing
is increased from 10% to 90% for three strategy pairs: (SIP,
SMU, PreD), (SIP, RR, PreD), and (SIP, OCUD, PreD)

We can see that negative action outcomes have a much
larger effect on strictly ordered intention selection (SMU),
e.g. the probability of (S1,F2) decreases from over 90% to
below 40%.Meanwhile, (SIP,OCUD, PreD) is more robust
to action outcome changes. For example, the probability of
(S1, S2) in it has a minor decrease of no more than 20%.
This is due to increased interleaving of these two intentions,
rendering the standard wrapping inapplicable more often. In
particular, in (SIP, RR, PreD), the strategy of round-robin
renders the standard wrapping inapplicable at all times when
handling product 2. As such, the probability changes of stan-
dard wrapping failing has no impact to the final result in this
case.

123

Quantitative modelling and analysis of BDI agents 361

Fig. 14 Probability of reaching the final state (product 1, product 2) with increasing failure probability in (SIP, SMU, PreD), (SIP, RR, PreD),
and (SIP, OCUD, PreD)

5 Discussion

We reflect on the insights gained by constructing a proba-
bilistic extension of Can language, including the process of
building bigraph models. We detail our first-hand experience
of the value and limits of the bigraph approach applied to
agent languages and their policies, which is not included in
our previous work e.g. [20].

By building on an existing encoding of Can in bigraphs
[19], much of the probabilistic extension required limited
effort. For example, most (deterministic) Can semantics
rules are modified to be probabilistic rules with a proba-
bility 1. For bigraphs, this requires the change of a reaction
rule from L � R to L

1 � R. The design of each agent
(e.g. plan library) remains unchanged. This is because we
focus on probabilistic behaviours rather than the probabilis-
tic knowledge (e.g. probabilistic belief bases [27] that we
detail in Sect. 6). Although it is promising to analyse an agent
with both probabilistic behaviours and knowledge, it remains
a challenging task in the context of verification given the
computational complexity of uncertainty theories and their
revision strategies. A feasible starting point of this integra-
tion can be an executable encoding of a belief base of a BDI
agent in any form of these uncertainties theory together with
its revision strategies in bigraphs before the final step of ver-
ification analysis, which we leave it as future work.

A characteristic of Can is that the transition rules can
be given incrementally, i.e. a modular operational semantics.
In this case, the modularity in Can separates how to evolve
an intention (i.e. the intention-level semantics) from how to
evolve the whole agent (i.e. the agent-level semantics). This
approach has its merits, for example, we can easily extend
or modify one side of the semantics (e.g. the agent-level)
without altering the other one. As such, it allows us to sepa-
rate concerns (decreasing errors) efficiently in the modelling
plan/event/intention selection strategies. In particular, such
a modular operational semantics turned out to be beneficial
when analysing various combination of these plan/event/in-
tention selection strategies under different action outcomes
(seen in Sect. 4.5).

When modelling different plan/event/intention selection
strategies, we found that BigraphER provides expressive
and highly flexible features to construct these. For exam-
ple, the priority classes of BigraphER naturally supports
ordered selection strategies (e.g. First-In-First-Out) while
conditional rules allow fixed schedules (e.g. Round-Robin)
through auxiliary token entities. These strategies are often
domain-independent (regardless of agent designs) as they do
not require the details of specific intention tomake a decision.

The parameterised reaction rules in BigraphER also play
a key role in probabilistic selection (especially from dynamic
distribution based on run-time domain-specific informa-
tion). These probabilistic selection strategies are likely to

123

362 B. Archibald et al.

be domain-dependent as they require the domain-specific
knowledge, e.g. deadlines. In practice, we often needed a
set of new rules to capture some domain specific information
updates. For example, the temporal information of progress
and deadline in smart manufacturing case are maintained
as separately: to increase the progress of an event whenever
either such an event or its related intention is stepped,whereas
to decrease the deadline of all events after an application of
any agent-level rule. Mirroring implementations, we update
timings in the background through applying instantaneous
reaction rules [15] on the bigraphs. Towrite these new instan-
taneous reaction rules, it is often sufficient to have some form
of discrete step update/manipulation rules. As these instanta-
neous rules do not show up in the resulting transition system,
it does not affect our analysis on the agent behaviours, which
is the focus of our work. We also note that these temporal
timings are treated as agent steps which suffices in our case
(rather than real times). However, a domain-specificmapping
of real time of each agent step on different agent programs
can be specified.

Our modelling approach comes with some limitations.
Firstly, our approach does not naturally support mixed strate-
gies, e.g. startingwith an ordered strategy before swapping to
probabilistic distribution. Modelling mixed strategies could
be possible by providing conditioned selection strategies.
In this approach, certain strategies are only applicable if
related conditions are held in the environment. To model this
in bigraphs, we could constrain strategies using pre-defined
ranges of agent-operation parameter steps, e.g. use strategy
x when deadline is less than 5. Secondly, there is a growing
amount of work employing external advanced decision-
making tools to solve selection problems (which we detail
Sect. 6). Our approach cannot be compared directly with
complex external decision-making techniques as advanced
decision-making tools are often black-box techniques that
we can not easily derive a discrete formal model for. For
example, [28] formalises the intention selection problem in
BDI agents as a planning problem in the PDDL description
language [29]. A possible way to compare with selection
strategies offered by this advanced decision-making tools is
to employ models at runtime by taking model updates as
inputs from external decision-making tools. Finally, we do
not model costs/rewards, e.g. the price of the wrapping bags
in Sect. 4.2. Utilising costs/rewards, we could performmulti-
objective optimisation, e.g. achieving different success rates
and robustness to action outcomes while keeping the overall
cost low.

Besides ensuring the agent model is correct, it is impor-
tant to make sure the model deals with the right issue and
helps ask the right questions. Our computational models can
help agent programmers understand the behaviours of the
agent they design before they are even employed. In other
words, these allow agent programmers to do virtual “what

if?” experiments—even changing the rules of how this detail
operates—before we try things out for real. For example, the
agent designer can use our models to understand the poten-
tial consequences of choices of different selection strategies
quantitatively, which selection strategy has a dominant effect
regard to the task completion in the given scenario, andhow to
parameterise the best probabilistic distribution, all of which
our approach supports and have demonstrated in Sect. 4. As
such, the designer can have the quantitative assurance on the
behaviours of the agents which they programmed.

6 Related work

Verifying BDI agents through model checking and theo-
rem proving has been well explored (seen in survey [30]).
For example, the work [31] (resp. [32]) applies the Java
PathFinder model-checker (resps. Isabelle/HOL proof assis-
tant) to verify BDI programs in a non-deterministic fashion.
Recent work also started considering probabilistic verifi-
cation of BDI agents. The work [33] uses a two-stage
verification methods that first generates a model through
program model checking (of a system implementation), and
then converts this model to PRISM input format for analysis.
However, unlike our focus on probabilistic extensions of the
BDI semantics itself, theBDI agent used in [33] does not con-
tain any probabilistic aspects. Instead, the environmentwhere
the agent executes enables the probabilistic reasoning. Simi-
larly, the work of [34] facilitates probabilistic verification of
BDI agents by encoding them in PRISM. In this case, instead
of generating the model based on an implementation, they
implement a significantly simplified version of AgentSpeak
directly in PRISM. The simplifications deviate from real-
istic BDI agents, e.g. enabling truly-concurrent intentions
(and no intention selection) and treating plan selection as
non-deterministic. Our approach faithfully modelled the full
Can semanticswith various selection strategies development
supportwhile still providing PRISMverification capabilities.
One of the closest work to us is perhaps the work [35] which
introduces probabilistic state transitions in BDI agents. Same
as us, they are motivated to capture the situation such as “if
an agent at state s1 executes an action, then it transfers to
state s2 with probability 0.7, or transfers to state s3 with
probability 0.3”, which is difficult to reason in standard BDI
agents. Unlike our work on the level of a BDI programming
language, however, their work is to propose a modal logic
system and proofs of properties are obtained from the result-
ing deduction system. Notably, a main disadvantage of their
work is that the description with the probability is restricted
to the transition between current time and the next time due
to its next-time-like temporal operator to construct a proof
system based on the tableau method.

123

Quantitative modelling and analysis of BDI agents 363

Besides BDI agents, quantitative verification techniques
have also applied to other types of agent systems. For
example, the work of [36] considers uncertain communi-
cation channels between systems of interacting agents. For
verification the multi-agent system is transformed to finite
state Markov chains for establishing quantitative tempo-
ral properties of the system. Similar to our evaluation of
plan/event/intention selection strategies, the work of [37]
provides a quantitative assessment for a decentralised control
policies in multi-vehicle scenarios. Specifically they study
conflict resolution policies to ensure that a policy never
causes collisions under some mild assumptions on the ini-
tial conditions. For general agent-based verification (which
is beyond the scope of this work), we refer to [38] for the
interested readers.

Works studying plan and intention selection strategies
have also been well investigated separately within the BDI
community. In fact, most BDI platforms provide some forms
of hooks that allow the agent developers to controlwhich plan
is adopted. For example, the plan selection function in [7] is
a user-defined function to customise plan/intention selection
for a particular application domain. Meanwhile, various plan
selection strategies such as precedence-based selection (e.g.
preference) is also studied in [39] to select more preferred
plans (according to some domain-specific plan characteris-
tics).

Unlike plan selection to choose the “best” means to
achieve an event, the intention selection which decides about
which intention is the best to execute next often comes as how
tomanage interleaving. Therefore, it is possible that the inter-
leaving of steps in different intentionsmay result in undesired
outcomes such as overlooked product left to be spoiled in our
smart manufacturing scenario. To manage intention inter-
leaving, researchers tend to employ external tools to help
the agent to pursue multiple intentions in parallel. For exam-
ple, the work of [24] compiles agent programs to TÆMS
(Task Analysis, Environment Modelling, and Simulation)
framework to represent the coordination aspects of problems
such as “enables” and “hinders” relations between tasks.
A Design-To-Criteria scheduler is then used for intention
selection to determine the full set of decisions that the agent
needs to perform. The work [40] applies the Single-Player
Monte Carlo Tree Search [41] to selects which intention to
progress at the current step. The work [28] showed that many
of the intention selection issues can be modelled in plan-
ning domain definition language (PDDL) [42] (the de-facto
standard planning language) and resolved through suitable
planners such as a modern highly efficient (online) plan-
ner [43]. In fact, an increasingly popular topic in the BDI
community is intention progression [44], e.g. the Intention
Progression Contest.3

3 https://sites.google.com/site/intentionprogression/home.

However, the goal of these plan and intention selection
studies above in BDI community is to help the agent to
make better decisions, by modifying or replacing entirely the
original BDI reasoning, either through some extra booking
of domain-specific information or through other advanced
decision-making techniques. On the contrary, the focus of
ourwork (arguably complementary to themat large) is to pro-
vide an automated quantitative analysis of BDI agents under
different common selection strategies (though excluding the
strategies provided by the external tool-based approach).

Existing work provides “what-if” analysis capability for
BDI agents through simulation. For example, [45, 46] pro-
poses an evacuation model using BDI agents and other
network-oriented modelling approaches (e.g. [47]). This
model simulates crowd behaviour to evaluate the effects of
changing psychological and socio-cultural factor parameters.
While useful, simulations or experiments only examine a
subset of all the possible behaviours of the given system.
If the resulting system is to be used in safety-critical areas,
the above approaches guarantee little about actual system
behaviour. Instead, we reason about systems through for-
mal reasoning and verification, analysing all the possible
behaviours of the system against pre-defined requirements.

There are many existing work on providing probabilistic
capacity to BDI agents for various reasons. For example, the
work [27] addressed the uncertainty in the belief base of a
BDI agent e.g. due to sensor noise (80% the agent believes
a true and 20% the agent believes ¬a true). To achieve so,
they modelled the beliefs of an agent as a set of epistemic
states and each state can use a distinct underlying uncertainty
theory (e.g. probability and possibilities probabilities) with
its own belief revision strategy. Similarly, it is possible to use
Bayesian Networks to represent probabilistic knowledge in
BDI agents [48]. Contrary to our approach in which proba-
bility comes to model the transition of agent behaviours for
a quantitative behaviour analysis, their focus is to provide
a quantitative approach of representing the knowledge (e.g.
probabilistic beliefs) of the agent for, at best, standard agent
qualitative testing. In particular, we note that a plan selection
strategy has been proposed a BDI agent under probabilistic
beliefs in [49]. However, such a plan selection strategy is
abstract i.e. no actual implementation and, importantly, its
feasibility and computational cost (e.g. tractability) remains
unclear, in particular in context of practical formal verifi-
cation. The work [50] presents an implementation of the
appraisal process of emotions using an add-on probabilistic
reasoning (specifically Bayesian networks) in BDI agents.
According to appraisal theory [51], the appraisal depends
of one’s goals and values, which can be represented as BDI
agents’ events and beliefs, and is calculated by Bayesian net-
works to estimate, e.g. the undesirability (a value) of being
in a smashed state (representing the emotion of fear) for a
robot.

123

https://sites.google.com/site/intentionprogression/home

364 B. Archibald et al.

7 Future work

Once we accept probabilistic reasoning inside an agent,
it quickly becomes apparent we could consider an exter-
nal uncertain environment. Currently, only some aspects
of an uncertain environment are addressed, i.e. interactions
between agent and environment can be probabilistic. For
example, the agent tries to open the door but may fail to
open it. However, the environment may change itself due to,
e.g. natural phenomena for example, 30% chance it will rain
tomorrow. We may need to assess whether the agent behaves
as required in all possible environmental changes. The dif-
ficulty is to obtain a realistic environment abstraction that
can be integrated with existing BDI semantics whilst avoid-
ing state explosion due to branching in both environment
changes and agent reasoning.We have previously considered
self-dynamic environments (without probabilistic distribu-
tion) for BDI agents [52]. One way forward is to extend this
with probabilities and integrate it with our new probabilistic
semantics.

As discussed, BDI agents have several key decisions to
make when operating: which event to handle first (event
selection), and which intention to progress next (intention
selection). Given the number of decisions faced by an agent,
we may want to synthesise a strategy to determine ahead-
of-time the decisions an agent should make e.g. to avoid
the worst-case execution. Though we cannot replicate some
advanced decision-making techniques e.g. from the planning
community, formal verification does offer some strategy syn-
thesis capabilities. For example, model checkers can give
a trace of evolution that makes some reachability-related
properties hold (e.g. some goals are achieved). To allow
this, instead of using pre-defined selection strategies (fixed,
round-robin, probabilistic choice), we can keep the non-
determinism explicit and ask a model checker for a good
strategy. This is our current ongoing work.

In principle, our current framework can support reasoning
about multi-agents naively: each agent as a thread. Though
feasible, we expect the state space will very quickly increase
and be practically infeasible. A way forward is to enforce
a schedule in which an agent can progress. Before we con-
sider multi-agent settings, a fundamental question is “what
are the interesting properties of agent behaviours in a multi-
agent setting that we can obtain from analysing only a single
agent?” If these properties are related to competition between
these agents, then a game-theoretical approach (e.g. in [53])
might be more suitable than a full multi-agent setting.

BDI agents draw heavily from logic programming, e.g.
Prolog [54], and feature similar syntax and semantics. Given
the probabilistic extensions to logic languages, e.g. Prolog
[55], a comparative study would allow research ideas to flow
between the probabilistic BDI agent and probabilistic logic

programming domains. We leave this investigation as future
work.

8 Conclusions

A quantitative evaluation and comparison framework can aid
design-time specification of agents by allowing us to reason
about agents that exhibit probabilistic behaviours fromuncer-
tain or failed actuators, and probabilistic decision policies.

We have extended the Can language—that formalises
the behaviour of a classical BDI agents including advanced
features such as failure recovery and declarative goals—
to a probabilistic setting, allowing both probabilistic action
outcomes and probabilistic selections, e.g. of plans. The
extended semantics is executable through an encoding to
probabilistic bigraphs, which enables quantitative analy-
sis using BigraphER and the probabilistic model checker
PRISM. Importantly, this approach allows examination of
the potential consequences of different selection strategies.

Through a smart manufacturing example we have shown
that it is possible to reason about different combinations of
selection strategies, and that probabilistic selection strategies
can reduce the impact of undesirable outcomes, compared
with ordered or fixed strategies. In this example, we found
that plan selection has limited effect compared to intention
selection, which is a valuable insight. In particular, due to the
agent making smarter intention selection choices, the impact
of action outcomes can be marginal—even when the failure
probabilities are large.

Acknowledgements This work is supported by the Engineering and
Physical Sciences Research Council, under PETRAS SRF grants
MAGIC andFARM(EP/S035362/1) andS4: Science of Sensor Systems
Software (EP/N007565/1).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix

We provide the full set of probabilistic rules for both agent
(Fig. 15a) and intention-level semantics (Fig. 15b) for Can
in Fig. 15.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Quantitative modelling and analysis of BDI agents 365

Fig. 15 Probabilistic extension of Can semantics from [3]

References

1. Rao, A.S.: AgentSpeak (L): BDI agents speak out in a logi-
cal computable language. In: European Workshop on Modelling
Autonomous Agents in a Multi-Agent World, pp. 42–55. Springer,
Berlin (1996)

2. Winikoff, M., Padgham, L., Harland, J., Thangarajah, J.: Declara-
tive and procedural goals in intelligent agent systems. In: the 8th
International Conference on Principles of Knowledge Representa-
tion and Reasoning. Morgan Kaufman (2002)

3. Sardina, S., Padgham,L.:ABDI agent programming languagewith
failure handling, declarative goals, and planning. Auton. Agent.
Multi-Agent Syst. 23, 18–70 (2011)

4. Hindriks, K.V., Boer, F.S.D., Hoek, W.V.d., Meyer, J.-J.C.: Agent
programming in 3APL. Auton. Agents Multi-Agent Syst. 2(4),
357–401 (1999)

5. Dastani, M.: 2APL: a practical agent programming language.
Auton. Agent. Multi-Agent Syst. 16(3), 214–248 (2008)

6. Winikoff, M.: JACK intelligent agents: an industrial strength plat-
form. In: Multi-Agent Programming, vol. 15, pp. 175–193 (2005)

7. Bordini, R.H., HüJomi, J.F., Wooldridge, M.: Programming multi-
agent systems in AgentSpeak using Jason (2007)

8. Pokahr, A., Braubach, L., Jander, K.: The Jadex project: program-
ming model. Multiagent Syst. Appl. 21–53 (2013)

9. Benfield, S.S., Hendrickson, J., Galanti, D.: Making a strong busi-
ness case for multiagent technology. In: the 5th International Joint

Conference on Autonomous Agents and Multiagent Systems, pp.
10–15. ACM (2006)

10. Braubach, L., Pokahr, A., Lamersdorf, W.: Negotiation-based
patient scheduling in hospitals. In: Advanced Intelligent Compu-
tational Technologies and Decision Support Systems, pp. 107–121
(2014)

11. Bordini, R.H., Fisher, M., Visser, W., Wooldridge, M.: Verifying
multi-agent programs by model checking. Auton. Agents Multia-
gent Syst. 12(2), 239–256 (2006)

12. Dennis, L.A., Fisher, M., Lincoln, N.K., Lisitsa, A., Veres,
S.M.: Practical verification of decision-making in agent-based
autonomous systems. Autom. Softw. Eng. 23(3), 305–359 (2016)

13. Chen, H.: Applications of cyber-physical system: a literature
review. J. Ind. Integr. Manag. 2(03), 1750012 (2017)

14. Padgham, L., Singh, D.: Situational preferences for BDI plans.
In: the 2013 International Conference on Autonomous Agents and
Multi-agent Systems, pp. 1013–1020 (2013)

15. Sevegnani, M., Calder, M.: BigraphER: rewriting and analysis
engine for bigraphs. In: Proceedings of International Conference
on Computer Aided Verification, pp. 494–501 (2016). Springer

16. Kwiatkowska,M.,Norman,G., Parker,D.: PRISM4.0:Verification
of probabilistic real-time systems. In: the 23rd International Con-
ference on Computer Aided Verification, vol. 6806, pp. 585–591
(2011)

17. Hansson, H., Jonsson, B.: A logic for reasoning about time and
reliability. Formal Aspects Comput. 6(5), 512–535 (1994)

18. Archibald, B., Calder, M., Sevegnani, M.: Probablistic bigraphs.
Formal Aspects of Computing 34 (2022)

123

366 B. Archibald et al.

19. Archibald, B., Calder, M., Sevegnani, M., Xu, M.: Modelling and
verifying BDI agents with bigraphs. Sci. Comput. Program. 215,
102760 (2022)

20. Archibald, B., Calder, M., Sevegnani, M., Xu, M.: Probabilistic
BDI agents: actions, plans, and intentions. In: Proceedings of Soft-
ware Engineering and Formal Methods, pp. 262–281 (2021)

21. Di Pierro, A., Wiklicky, H.: An operational semantics for proba-
bilistic concurrent constraint programming. In: the 1998 Interna-
tional Conference on Computer Languages, pp. 174–183. IEEE
(1998)

22. Prosser, P., Unsworth, C.: Limited discrepancy search revisited. J.
Exp. Algorithmics (JEA) 16, 1–6 (2011)

23. Younes, H.L., Littman, M.L.: PPDDL1.0: An extension to PDDL
for expressing planning domains with probabilistic effects. Tech-
nical Report CMU-CS-04-162 2, 99 (2004)

24. Bordini, R.H., Bazzan, A.L.C., Jannone, R.D.O., Basso, D.M.,
Vicari, R.M., Lesser, V.R.: AgentSpeak (XL) efficient intention
selection in BDI agents via decision-theoretic task scheduling. In:
The First International Joint Conference on Autonomous Agents
and Multiagent Systems: Part 3, pp. 1294–1302 (2002)

25. Milner, R.: The Space and Motion of Communicating Agents.
Cambridge University Press, Cambridge (2009)

26. Archibald, B., Muffy, C., Sevegnani, M.: Conditional bigraphs.
In: International Conference on Graph Transformation, pp. 3–19
(2020). Springer, Berlin

27. Bauters, K., McAreavey, K., Liu, W., Hong, J., Godo, L., Sierra,
C.: Managing different sources of uncertainty in a BDI framework
in a principled way with tractable fragments. J. Artif. Intell. Res.
58, 731–775 (2017)

28. Xu,M.,McAreavey,K., Bauters, K., Liu,W.: Intention interleaving
via classical replanning. In: 2019 IEEE 31st International Con-
ference on Tools with Artificial Intelligence (ICTAI), pp. 85–92
(2019). IEEE

29. McDermott, D.: The AIPS-98 planning competition committee.
PDDL—The Planning Domain Definition Language (1998)

30. Luckcuck,M., Farrell,M.,Dennis, L.A.,Dixon,C., Fisher,M.: For-
mal specification and verification of autonomous robotic systems:
a survey. ACM Comput. Surv. (CSUR) 52(5), 1–41 (2019)

31. Dennis, L.A., Fisher, M., Webster, M.P., Bordini, R.H.: Model
checking agent programming languages. Autom. Softw. Eng.
19(1), 5–63 (2012)

32. Jensen, A.B.:Machine-checked verification of cognitive agents. In:
Proceedings of the 14th International Conference on Agents and
Artificial Intelligence, pp. 245–256 (2022)

33. Dennis, L.A., Fisher, M., Webster, M.: Two-stage agent program
verification. J. Log. Comput. 28(3), 499–523 (2018)

34. Izzo, P., Qu, H., Veres, S.M.: A stochastically verifiable
autonomous control architecture with reasoning. In: IEEE Con-
ference on Decision and Control, pp. 4985–4991 (2016)

35. Nide, N., Takata, S., Fujita, M.: BDI logic with probabilistic tran-
sition and fixed-point operator. In: Proceedings of CLIMA’09, pp.
71–86 (2009)

36. Dekhtyar,M.I.,Dikovsky,A.J.,Valiev,M.K.: Temporal verification
of probabilistic multi-agent systems, 256–265 (2008)

37. Pallottino, L., Scordio, V.G., Frazzoli, E., Bicchi, A.: Probabilistic
verificationof a decentralizedpolicy for conflict resolution inmulti-
agent systems. In: IEEE International Conference on Robotics and
Automation, pp. 2448–2453 (2006)

38. Bakar, N.A., Selamat, A.: Agent systems verification: system-
atic literature review and mapping. Appl. Intell. 48(5), 1251–1274
(2018)

39. Visser, S., Thangarajah, J., Harland, J.: Reasoning about prefer-
ences in intelligent agent systems. In: Twenty-Second International
Joint Conference on Artificial Intelligence (2011)

40. Yao, Y., Logan, B.: Action-level intention selection for BDI
agents. In: Proceedings of the 2016 International Conference on
AutonomousAgents&Multiagent Systems, pp. 1227–1236 (2016)

41. Schadd, M.P., Winands, M.H., Tak, M.J., Uiterwijk, J.W.: Single-
playerMonte-Carlo tree search for Samegame.Knowl.-Based Syst.
34, 3–11 (2012)

42. McDermott, D., Ghallab, M., Howe, A., Knoblock, C., Ram, A.,
Veloso, M., Weld, D., Wilkins, D.: PDDL-the planning domain
definition language. Technical report (1998)

43. Keller, T., Eyerich, P.: Prost: Probabilistic planning based on UCT.
In: Twenty-Second International Conference on Automated Plan-
ning and Scheduling (2012)

44. Logan, B., Thangarajah, J., Yorke-Smith, N.: Progressing intention
progression: a call for a goal-plan tree contest. In: AAMAS, pp.
768–772 (2017)

45. Van der Wal, C.N., Formolo, D., Robinson, M.A., Minkov, M.,
Bosse, T.: Simulating crowd evacuation with socio-cultural, cog-
nitive, and emotional elements. In: Transactions on Computational
Collective Intelligence XXVII, pp. 139–177. Springer, Berlin
(2017)

46. Van der Wal, C.N., Formolo, D., Robinson, M.A., Gwynne, S.:
Examining evacuee response to emergency communications with
agent-based simulations. Sustainability 13(9), 4623 (2021)

47. Treur, J.: Network-Oriented Modeling, 1st edn. Springer, Cham
(2016)

48. Kieling, G.L., Vicari, R.M.: Insertion of probabilistic knowledge
into BDI agents construction modeled in Bayesian networks. In:
2011 International Conference on Complex, Intelligent, and Soft-
ware Intensive Systems, pp. 115–122. IEEE (2011)

49. Ma, J., Liu, W., Hong, J., Godo, L., Sierra, C.: Plan selection for
probabilistic BDI agents. In: 2014 IEEE 26th International Confer-
ence on Tools with Artificial Intelligence, pp. 83–90. IEEE (2014)

50. Gluz, J.C., Jaques, P.A.: A probabilistic implementation of emo-
tional BDI agents. In: ICAART (1), pp. 121–129 (2014)

51. Moors, A., Ellsworth, P.C., Scherer, K.R., Frijda, N.H.: Appraisal
theories of emotion: state of the art and future development. Emot.
Rev. 5(2), 119–124 (2013)

52. Archibald, B., Calder, M., Sevegnani, M., Xu, M.: Verifying BDI
agents in dynamic environments. In: Proceedings of the Inter-
national Conference on Software Engineering and Knowledge
Engineering, pp. 136–141 (2022)

53. Abate, A., Gutierrez, J., Hammond, L., Harrenstein, P.,
Kwiatkowska, M., Najib, M., Perelli, G., Steeples, T., Wooldridge,
M.: Rational verification: game-theoretic verification of multi-
agent systems. Appl. Intell. 51(9), 6569–6584 (2021)

54. Nugues, P.M.: An Introduction to Prolog. Springer, New York
(2006)

55. Dries, A., Kimmig, A., Meert, W., Renkens, J., Van den Broeck,
G., Vlasselaer, J., De Raedt, L.: Problog2: Probabilistic logic pro-
gramming. In: Machine Learning and Knowledge Discovery in
Databases: European Conference, ECML PKDD 2015, Porto, Por-
tugal, September 7–11, 2015, Proceedings, Part III 15, pp. 312–315
. Springer, Berlin (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

Quantitative modelling and analysis of BDI agents 367

Blair Archibald is a Lecturer
in Computing Science at the Uni-
versity of Glasgow, UK, where
we was awarded a PhD in 2018.
His research focuses on tools, e.g.
graph rewriting, for modelling and
reasoning about systems, paral-
lelisation of large-scale combina-
torial search problems, and pro-
gramming languages -most recently
with application in digital chem-
istry.

Muffy Calder is Professor of For-
mal Methods and Vice Principal
and Head of College of Science
and Engineering at the Univer-
sity of Glasgow. She has a long
track record of developing mod-
elling and analysis techniques for
complex, interactive, and sensor-
based systems, with applications
in communications, cyber physi-
cal, and biochemical systems. She
also leads research on privacy
intrusion and AI analytics. For
more information, please visit
https://www.dcs.gla.ac.uk/~muffy/.

Michele Sevegnani is Senior Lec-
turer of Computing Science at the
University of Glasgow, UK. He
received a joint MSc in Bioin-
formatics from the universities of
Edinburgh and Trento (Italy) in
2008 and a PhD in Computing
Science from the University of
Glasgow in 2012. He was a Vis-
iting Researcher at the University
of California Berkeley and the
University of Cambridge working
on formal modelling techniques
for robotic and cloud systems. He
is currently the Principal Inves-

tigator of research projects focussing on achieving security and
resilience for autonomous vehicles and Agritech systems. His research
interests include theoretical models of computation, stochastic pro-
cesses for predicting failures and availability, sensor validation in IoT,
and automated reasoning for autonomous agents. He has received
funding from EPSRC, the Royal Society, RSE, the British Council, the
London Mathematical Society, and Amazon Research.

Mengwei Xu is currently Research
Fellow at the University of Manch-
ester, UK, and due to starting a
lectureship at the University of
Newcastle from September 2023.
Previously, he worked as Research
Associate at the University of
Glasgow from 2020 to 2022. He
received a PhD in Computer Sci-
ence from the University of Bris-
tol in 2020. His expertise is in
designing, developing, and analy
-sing autonomous agent systems,
in particular, the rational agent,
e.g. Beliefs-Desires-Intentions

agent. For more information, please visit https://mengweixu.netlify.
app/

123

https://www.dcs.gla.ac.uk/~muffy/
https://mengweixu.netlify.app/
https://mengweixu.netlify.app/

	Quantitative modelling and analysis of BDI agents
	Abstract
	1 Introduction
	1.1 Approach

	2 Background
	2.1 BDI agents
	2.1.1 BDI syntax
	2.1.2 BDI semantics
	2.1.3 Agent example

	3 Probabilistic CAN semantics
	3.1 Probabilistic agent-level semantics
	3.1.1 Probabilistic event adoption
	3.1.2 Probabilistic intention progression
	3.1.3 Probabilistic intention update

	3.2 Probabilistic intention-level semantics
	3.2.1 Probabilistic action outcomes
	3.2.2 Probabilistic plan selection
	3.2.3 Probabilistic concurrency

	3.3 Constructing selection functions
	3.3.1 Situation value functions
	3.3.2 Selection functions
	3.3.3 Action outcomes

	4 Evaluation
	4.1 Smart manufacturing example
	4.2 Agent design
	4.3 Selection strategies
	4.3.1 Agent-level operation selection strategies
	4.3.2 Event/intention and plan selection strategies

	4.4 Encoding in bigraphs
	4.4.1 Bigraphs
	4.4.2 Encoding agent-level operation selection strategies
	4.4.3 Encoding event/intention and plan selection strategies
	4.4.4 Encoding probabilistic action outcomes
	4.4.5 Intention success and failure

	4.5 Analysis

	5 Discussion
	6 Related work
	7 Future work
	8 Conclusions
	Acknowledgements
	Appendix
	References

