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Abstract

Synthetic peptides are becoming increasingly important in
industry and academia, including applications in peptide-
based therapeutics. While Solid Phase Peptide Synthesis
(SPPS) is largely automated, current software options for
describing this process are instrument-specific, with no uni-
fying standard protocol specification. Post-synthesis modi-
fication of peptides in the solution phase is also performed
manually. As a result, discovery and process optimisation
remains an iterative and manual process, requiring large
amounts of human intervention and labour.

Here we introduce TideScript: a domain specific language
for peptide chemistry. TideScript aims to provide a pro-
gramming language to standardize protocol descriptions,
allowing unambiguous specification, increased automation,
and autonomous optimization. At present, TideScript is a
formal specification language, with scope to expand into full
execution on hardware.

We give a full description of TideScript, including its syn-
tax and a small-step operational semantics, and show how
TideScript can encode three common peptide protocols:
peptide chain assembly by SPPS, peptide cleavage and thiol-
maleimide conjugation. We compare this approach to exist-
ing non-peptide-specific chemical protocol languages, yDL
and BioScript.
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1 Introduction

Chemistry research has a reproducibility problem [8]. Exper-
imental protocols are expressed in continuous prose and
use imprecise terminology—e.g. “add dropwise” or “stir
overnight at room temperature”—making it difficult to
re-run experiments manually, and almost impossible to au-
tomate their execution. This reproducibility problem can be
tackled through the development of domain-specific (proto-
col) languages (DSLs). DSLs for chemistry promise to stan-
dardise procedures across different instruments and plat-
forms; increase reliability; facilitate automation; and enable
autonomous process optimisation [15].

While laboratory automation is growing, current work
is often focused on specific tasks within a larger overall
workflow and only considers specific proprietary hardware.
Recently, there has been progress in programmable chem-
istry across industry and academia, and many syntheses
have been carried out [16, 19].

Peptide chemistry is a chemistry sub-field with critical
applications in the pharmaceutical industry. Over 80 peptide
therapeutics are approved globally [35], including ozempic
(semaglutide) for treating obesity and diabetes [20]; enfuvir-
tide to treat HIV [5]; and ziconotide, to treat chronic pain [10].
Peptides can also be conjugated (chemically bonded) to small
drug molecules to increase their selectivity and efficacy. Pep-
tide therapeutics can also be used to prime the immune
system for cancer treatment [34].

Automated execution of peptide chemistry procedures
entails unique considerations and challenges. Here we in-
troduce TideScript, a domain specific protocol language
for peptide chemistry. TideScript has primitives for execu-
tion of basic chemical steps, e.g. mixing, agitation, heating,
and domain modelling of the underlying chemistry. We give
a formal syntax and operational semantics and show how
TideScript can be used to encode several existing peptide
protocols. Currently, TideScript provides formal specifica-
tion of peptide protocols, but we aim to develop it to a fully
executable on automated laboratory hardware. TideScript
has been designed to maintain portability, that is to say it can
be developed to target a variety of hardware architectures.

TideScript also has scope for development of a richer
type system, one that can catch procedural and chemical
errors. We plan to develop typing that increases safety, relia-
bility and reproducibility of peptide chemistry. TideScript
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initially focuses on peptide chemistry, in order to focus in
and better capture the problem domain, but there is scope
for expansion into broader chemistry.

“The purified peptide was taken up in DMF (approx-
imately 2 mg/mL). An aliquot of a stock solution of
17[anti-bacterial derivative] in DMF (2.87 mM) was
added such that the volume added corresponded to 3
eq, and the reaction mixture stirred at RT for 3 h”

(4)

#declare peptide
peptide pep_a = <SADC(acm)LKSC(acm)LRMCPDRIIL >;

#declare molecule

molecule mol_b = (C14H31N708S);

IR NI N

#declare solvent
solvent dmf;

3

10
11
12
13
14
15 #define protocol

16 protocol <solution> conjugate
17 (pep_sol mol_sol volume unit)
18
19
20
21
22
23

#declare solutions by passing in materials
solution sol_x = [pep_a(2 mgMl) in dmf];

solution sol_y = [mol_b(2.87 mM) in dmf];

g

= {
new_solution = mix pep_sol(1 eq)
+ mol_sol(3eq) at volume unit;
changeTemp new_solution to 21 C;
agitate new_solution;

wait 3 hours;

return new_solution

24 }

25

26 #call protocol at different scales
27 call conjugate (sol_x sol_y 1 mL);
28

29 call conjugate (sol_x sol_y 100 mL);
30

31 call conjugate (sol_x sol_y 1 L);

(B)

Figure 1. (A) The published literature procedure for a pep-
tide thiol-maleimide from reference [30] and (B) The same
protocol expressed in TideScript.

The necessity for such a language is shown in the example
of Figure 1 (procedure taken from [30]) showing a protocol
where a peptide and anti-bacterial molecule are bound to-
gether via a thiol-maleimide conjugation procedure. Figure
1A shows the plain text protocol description from the origi-
nal publication. While all the steps are well-specified, it is not
clear how to automate this procedure. Using TideScript, we
can instead express the protocol unambiguously as shown in
Figure 1B. While slightly longer, we are much more explicit
about which peptides, molecules, solvents, and solutions are
involved and how they should be combined. Ambiguity is
removed, e.g. “room temperature” is defined explicitly as
21 °C.
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This protocol does not specify a volume of solution but
instead instructs the chemist to add 3 equivalents, mean-
ing it is applicable to any scale. To allow scalable proto-
cols in TideScript, protocol constructs operate similarly
to functions in computer programming languages: i.e. they
are parametrised by specific values. In this case, we define
conjugate over different volume units, and show how we
can call it at multiple scales. Chemical reactions do not nec-
essarily scale linearly, that is to say different outcomes can
be observed at different scales due to a variety of factors [25].
This is something to consider when automating protocols at
different scales, and new kind of reaction optimisations may
be required. What was successful at a smaller scale may not
be at larger scales.

We were motivated to enable the encoding of similar pro-
tocols in TideScript, and make the following research con-
tributions:

e We design TideScript: a novel, high-level protocol
language, for peptide synthesis.

e We present formal syntax and operational semantics
for the language.

e We show how TideScript is expressive enough to
capture three existing protocols, and compare the ap-
proach with existing chemical protocol languages yDL
and BioScript.

2 Peptide Chemistry

Peptides and proteins are chains of amino acids. Peptides are
small proteins or sections of proteins. The point at which a
growing peptide chain becomes a protein is not explicitly
defined, but generally proteins are much larger (greater than
50 amino acids in length) and tend to adopt more complex
three dimensional structures [13].

Peptides and proteins are ubiquitous in nature and mediate
a large variety of biological functions. This makes them ideal
to produce therapeutic effects. Peptides can can be expressed
from cells, derived from animal tissue, or produced fully
synthetically [13]. Synthetic peptides provide great flexibility
as modifications can be made at specific amino acid sites to
expand their functionality [35].

Peptides are generally either modified while dissolved in
a solution or synthesised via binding to a solid support. To
fully capture peptide chemistry, TideScript supports both
mechanisms.

2.1 Solution Phase Modifications

In-solution peptide modifications involve protocols where
peptides are dissolved in solutions and reactions are per-
formed on them. The procedure outlined in figure 1 is a
thiol-maleimide conjugation, but there are many other ex-
amples of in-solution modifications [35].

There are also many other factors to consider and optimise
for, such as the reaction conditions (temperature, time etc.),
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Figure 2. A) The structure of a generic amino acid. B) An example amino acid, Lysine. C) Corresponding SPPS building block,
Fmoc-Lys(Boc)-OH, with the appropriate protecting groups on the N-terminus and side chain.
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Figure 3. Typical workflow of peptide assembly by Solid Phase Peptide Synthesis (SPPS).

and whether the appropriate amino acid sites are present (e.g. on the functional sites we do not want to react. The pro-
thiol-maleimide conjugation requires a cysteine residue, but tecting groups are removed in a specific order, to allow as-
multiple cysteine residues may require a protecting group sembly at the correct orientation. Compare the structure of
strategy). the amino acid Lysine, and the structure of a corresponding

SPPS building block, Fmoc-Lys(Boc)-OH, see figure 2.

When an amino acid is coupled in the chain, the N-terminal
2.2 Solid Phase Peptide Synthesis protecting group is removed, allowing the next amino acid to
be coupled. The side chain protecting groups remain intact
until the peptide is fully assembled, then they are removed
as the peptide is removed from the solid support, see figure 3.
The important thing to remember is that is peptide chains are
assembled in a sequential building block manner, through a
series of successive steps.

Before in-solution modifications take place, peptide chains
themselves are usually assembled using a technique known
as solid phase peptide synthesis (SPPS). Here amino acids
are joined together (coupled) into a growing peptide chain
that is attached to a solid support. The solid support retains
the growing peptide chain and allows for unreacted starting
materials and side products to be washed away [11]. This pro-
cess is amenable to automation, and has been automated for
many decades. However, removal of the peptide chain from
the solid support (cleavage), and the in-solution modifica-

3 TideScript: A Protocol Language for
Peptide Chemistry

tions described before, largely remain manual processes [11]. TideScript is designed with careful consideration of the

An amino acid has 2-3 reactive functional groups, depend- aspects of the problem domain and how these need to be
ing on the side chain. In order to assemble the peptide se- captured and modelled within the constructs of the language.
quence in the desired way, we need to have protecting groups To mimic the nature of existing chemical process definitions,
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we use a declarative/imperative approach! where series of
statements give precise instructions to equipment in the
system architecture. These actions have an effect on the
state of the program. Rather than computational state, the
state refers to the status of the experimental apparatus (the
presence of materials, their temperature, whether they are
agitating etc.). The system architecture, refers to the set up of
equipment (pipettes, electrodes etc.) rather than a computer
chip architecture.

Language statements fall into two categories: declaration
and operation. Declaration statements declare the materials
involved in the experiment, e.g. a particular solution such as
0.1 g/mL NaCl in water, while operation statements describe
actions performed on them.

We give the abstract syntax in figure 4, and specific proto-
col examples are in section 7.1.

3.1 Materials and Declaration Statements

Solution phase peptide reactions involve the manipulation
and interactions of solutions, and the chemical reactions
that occur within these solutions. A solution consists of
a (possibly empty) set of solutes (peptides or molecules),
dissolved at particular concentrations, in a set of at least one
solvent. Solutes and solvents can be thought of as primitives
and solutions as composite data structures. Programs begin
with users declaring these primitives.

3.1.1 Molecules. Molecule declarations associated iden-
tifiers, e.g. a molecule name, to a molecule description. The
description of the molecule is either its molecular formula or
its SMILES specification and this can be used to enable chem-
istry specific modelling. For example, deriving molecular
weights and using them in mass spectrum analysis. SMILES
is the simplified molecular input line entry system (SMILES).
It is a specification describing full chemical structures as
ASCII strings, and it is used commonly in computational
chemistry [37]. TideScript uses the open-source OpenS-
MILES specification [33]. SMILES specifications are more
powerful than simple formulas as they elucidate the full
structure of the compound to aid in more comprehensive
analysis, reaction monitoring and process optimisation [28].

3.1.2 Peptides. We introduce constructs for peptide decla-
rations. While peptides are essentially just large molecules,
they are a separate construct in TideScript, as peptide
chemistry is chiefly concerned with modifications to these
special peptide molecules. Peptide declarations also involve
assigning an identifier to a description. Like a molecule, they
can be described by their formula or SMILES string. How-
ever, it is intended that they are usually described by their
sequence of amino acids, denoted by their corresponding

1An open question is whether it is worth breaking from this tradition and
discovering if chemistry could be better specified through other approaches,
e.g. logic languages.
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one letter code, e.g. PEPTIDE. The compiler can derive the
formula and SMILES representation of a linear peptide from
its peptide sequence.

3.1.3 Solutes. Solutes describe entities that can be dis-
solved in solvents. In TideScript, a solute is simply either
a peptide or molecule.

3.1.4 Solvents. Solvents are media (usually liquids) that
are used to dissolved solutes. Common examples include
water, DMF (dimethylformamide, not to be confused with
digital microfluidics), DMSO etc. The user can select a solvent
from a standard library, and each solvent type encodes record
type information that is relevant to experiments, namely:
polarity, whether or not it is protic (proton donating) and
its refractive index. These data are relevant for future type-
checking of reactions and downstream analysis. For example,
a particularly hydrophobic peptide will not be soluble in a
polar solvent, or a reaction might only proceed with a protic
solvent.

The user can define their own solvents if they are not
available in the standard library. The minimum requirement
is a string that describes the solvent, and additional infor-
mation, e.g. on polarity, is optional (at the cost of weaker
chemical analysis).

3.1.5 Solutions. A solution consists of one or more so-
lutes, dissolved at a particular concentration, in one or more
solvents. For example, a salt solution consisting of sodium
chloride dissolved in water at 1 g/mL. Solutions are repre-
sented in the language as data structures with an assigned
identifier.

When Solutions are declared, they are located, as opposed
to solutes and solvents, when they are instantiated they are
a physical entity that operations can be performed on. That
is, they will map to physical locations within a particular
hardware setup: a specific reaction vessel, or cell in a DMF
setup.

There are two important features of solutions. First, when
they are instantiated, they are assumed to have infinite vol-
ume. That is they can continually be dispensed from without
incurring any errors from the compiler. This allows “run-
ning” the protocol and letting the program inform the user
how much of a particular solution is required at setup phase.
Secondly, solutions are assumed to be within their own con-
tainer, there is not a separate construct for containers (e.g.
flasks), i.e. a user instantiates a solution x, solution x is con-
tained within its own container. This improves readability,
but more importantly keeps the language hardware agnostic,
as the domain of reaction vessels in a Chemputer vs a digital
microfluidic board is very different.

3.1.6 Neat Solutions. Many chemical compounds involved
in experiments may exist as neat liquids, there is a neat con-
struct where the user can declare a solution that is simply
the neat form of a previously declared molecule.
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1 molecule methanol = (CH30H);
2 methanol_sol = neat(methanol);

3.1.7 Units. There is support for different units when
declaring solutions. This is because reactions are performed
at a variety of scales: from microgram to kilogram scales.
Units within the language allow for more readable and ex-
pressive programs. Concentrations can also be expressed in
moles per unit volume as well as a mass (e.g. grams) per unit
volume. We support automatic inference between grams and
moles based on the compounds molecular weight.

3.1.8 Example. Declaration statements may look like this:

solvent dmso;

1

2 molecule a = (CH20);

3 molecule b = (CC(=0)Cclcccccl);
4 peptide pepl = MKLWGSAPFT;

5

solution x = [a(1l mgML) in dmso]

3.2 Operation Statements

The other category of statements within the language are
operation statements. These will involve actuating compo-
nents of the system architecture, and making changes to the
state of the program. Operations statements can further be
divided into operations that instantiate new solutions, and
operations that change the status of existing solutions

3.2.1 Operations to Instantiate New Solutions. The
language has constructs for dispensing and mixing, these
statements will generate a new solution in the program state.
For example, dispensing 5 mL of solution x leads to a new so-
lution x” with identical composition(in terms of solvents, dis-
solved solutes, and their respective concentrations). Adding
instead, involves dispensing from two existing solutions x
and y and creating a new solution z that has both sets of
solutes and solvents concatenated.

1 solution x = mix a(l eq) + b(2 eq) at 5 mL

3.2.2 Operations That Change the Status of a Solution.
There are also operation that will change the status of a
solution. This includes changing its agitation state (e.g. is it
being stirred), or applying changeTemp to the solution.

1 changeTemp a at 21 C;

2 agitate a;

3.2.3 Protocols. Protocols are analogous to functions from
traditional programming languages. This is a powerful con-
struct that allows the user to define a series of operations,
that can be executed on input parameters. Higher order pro-
tocols are not allowed, e.g. one protocol cannot be used as a
parameter to another. The user can however call protocols
within the body of the protocol, allowing modularisation
and building larger protocols (as demonstrated in section 7).

The return type of a protocol can either be void—i.e. noth-
ing is returned—or it can return a new solution, when the
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protocol creates a new solution from e.g. dispensing or mix-
ing.

1 protocol<void> shake_solution (sol){

2 agitate sol;

3 wait 20 s;

4 agitate sol

50}

6

7 protocol<solution>(sol_1 sol_2 volume){

8 sol = mix sol_1(1 eq) + sol_2(2 eq) at volume
9%

3.3 Timing

As many experimental procedures require leaving the exper-
iments for a certain amount of time. e.g. "stir for 3 hours", we
introduce a wait construct. The user can specify an amount of
time to wait, with support for units seconds, minutes, hours.
Currently, only the front-end compiler is implemented, so
the waiting times are not yet actionable and are simply just
encoded in the script syntax.

1 wait 40 s;
2 wait 5 mins;
3 wait 4 hours;

4 Syntax

The abstract syntax of TideScript is outlined in figure
4. A Program, P consists of a zero or more statements. In
TideScript, a statement can consists of either a declaration,
an operation or a protocol definition. While it is common to
have all declarations up-front, there is no strict requirement
for this, and TideScript allows mixing declarations and
operations. Declaration statements describe the presence of
a material in an experiment by assigning an identifier, v, to
them. Solution declarations have an identifier, v{, a set of
identifiers, v, (which are references to previously declared
peptides or molecules), with their corresponding concentra-
tions, and a list of solvents that they are dissolved in within
the solution.

Operation statements describe physical operations carried
out by the hardware on the experiment materials. Agitate
calls a reference of a previously declared solution. Heat is
applied to a reference identifier at a particular temperature.
Dispense dispenses a volume, vol, from from a reference
solution. Mix dispenses two volumes from two solutions and
combines them.

Protocol definitions use the terminal protocol, with an
identifier for the protocol name, a return type t, a list of iden-
tifiers as input parameters, and a nested series of statements
that are to be executed on the input parameters.

Finally, Call executes a protocol by passing in parameters
(by reference).
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<Statement> := <Declaration> | <Operation> | <Protocol>
<Program> == <Stat>*
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<Type> == Peptide | Molecule | Solvent | Solution | Void
<Sequence> == [A-Z]+

<Formula> == [A-Z][0-9]1[a-z]?

<Smiles> == ...

<Declaration> u:= <PeptideDeclaration> | <MoleculeDeclaration> | <SolventDeclaration> | <SolutionDeclaration>
<NeatDeclaration>

<PeptideDeclaration> := peptide v = <Sequence>
<MoleculeDeclaration> := molecule v = [<Formula> | <Smiles>]
<SolventDeclaration> ::= solvent v

<SolutionDeclaration> := solution v = [ v (<conc>) 1* v <vol>
<NeatDeclaration> ::= solution V' = neat(v)

<Operation> == <Agitate> | <Heat> | <Dispense> | <Mix> | <Call>

<Agitate> := agitate v

<ChangeTemp> ::= changeTemp v <float>
<Dispense> == 1/ =dispense v <vol> <ConcUnit>
<ConcUnit> == C | K <Vol> == <float> <VolUnit>
<VolUnit> == plL | mL | L

<Conc> == <float> <ConcUnit>

<ConcUnit> := mg/mL | mol/L

<Wait> == wait <float> <TimeUnit>

<TimeUnit> := s | mins | hours

<Mix> == v/ = mix v vol; w voly | v/ = mix v (<float> eq) w(<float> eq) at <Vol>

<Protocol> := protocol v (<Type>) [<Statement>]*

<Call> == call v (Vargs)®

Vp(u’anls

Figure 4. Abstract Syntax for TideScript. The full specification for smiles is omitted and available elsewhere [33]. Keywords

are highlighted in bold, units in blue and identifiers in green.

5 Semantics
5.1 Definitions and Notation

Consider each operation, where P denotes the program and
S denotes the program state.

(P,S) 1)

The state of the program includes sets of all declared mate-

rials: This is peptides (Pep), molecules (Mol), solvents (Solv),

solutions (Sol), and Protocols (Prot). We use lower case let-
ters for elements of a set.

mol € Mol  (a molecule within the program set) (2)
pep € Pep  (a peptide within a set) 3)
solun € Solun (a solvent within a set) (4)
sol € Sol (a solution within a set) (5)
prot € Prot  (a protocol within a set) 6)

So a state s, can be described as
s = (Pep, Mol, Solv, Sol, Prot) (7)

As we care, in particular, about the manipulation of solu-
tions this is the most interesting set. A solution contains a
set of dissolved peptides or molecules, [pep|mol], and their
corresponding concentration, conc. There is also a set of
solvents contained within the Solution. Additionally, there
are other properties of the solution such as the volume, vol,
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temperature, T, and the boolean of its agitating state, ag.
Sol = {[pep|mol]*, Solun*,vol, T, ag) (8)

When we want to describe an update to the program state,
with a new component (such as a solution, protocol etc), with
the identifier, v, we will deconstruct the state and show the
component as being in the union of one of the state sub-sets.
e.g. S(v U Sol), but we will omit the entire tuple.

5.2 Declaration Rules and Axioms

The [PeptideDeclaration] rule describes declaring a peptide
in the program set, the identifier, v, is passed in by refer-
ence and must not exist already in the set of peptides in the
program state, Pep. The declared peptide is now part of the
program state. The same logic applies to the [MoleculeDecla-
ration] and [SolventDeclaration] rules.[SolutionDeclaration]
is more complicated, the solution identifier, v; must not be
declared already in the program set, the set of peptides or
molecules, v; must be declared already, as well as the set of
solvents, v;. The Solution, identified by v is then appended
into the program state.

The [ProtocolDeclaration] rule describes defining a new
protocol, the protocol identifier must not exist in the program
set, and the defined protocol is added to the program set, with
a list of parameters, v,, contained within a list of operations
to perform on those parameters.



TideScript: A Domain Specific Language for Peptide Chemistry

v & Pep
(peptide v :: P,S) — (P,S(v U Pep))

[PeptideDeclaration)]

v ¢ Solun

SolventDeclarati
[SolventDeclaration] (solvent v = P, S) — (P,S(v U Solvn))

Onward! "25, October 12-18, 2025, Singapore, Singapore

[MoleculeDeclaration]
v ¢ Mol
{molecule v :: P,S) — (P,S(v U Mol))

[SolutionDeclaration]
vy € Sol v, € S(Pep,Mol) vs3 € S(solon)
(solution vy [vy, conc]* v; Vol :: P,S) — (P,S(v; U Sol))

v ¢ Prot

[ProtocolDeclaration]

(protocol vt v, (D|O)* :: P,S) — (P,S(v U Prot))

Figure 5. Small-step operational semantic rules for declaration statements in TideScript.

5.3 Operation Rules and Axioms

The [DispenseOperation] rule describes dispensing a volume
n, from a solution with the identifier,v, where the volume of
the solution is greater than the dispensation volume. Solution
v now has a volume reduced by n and v’ is added to the set
with a volume of n.

The [DispenseAllOperation] rule describes dispensing a
volume vol, from a solution v, where the all of the solution is
being dispensed. The solution v is removed from the program
set and a new solution, v’ is added to the set with a volume
of n.

The [Agitate] rule toggles the agitation state of the so-
lution. Agitation can take many forms depending on the
equipment. This could be shaking, stirring, rotating etc. Ad-
ditionally, it is not just a binary toggle, as it can have magni-
tude, e.g. "stir at 200 rpm". The semantics currently model
agitation as a toggle, as this suffices for many protocols, that
will simply state "stir for x hours". We do however aim to
expand upon this in future.

The [ChangeTempOperation] rule alters the temperature
of an existing solution to a temperature value, n, within the
program set. Semantically, the program assumes we have full
control over the solution temperature, this is not the case in
practice as it can be difficult to precisely control a solution’s
temperature, one can only apply heat or cooling. Section 9.2
discusses in more detail how equipment conformance may
be tackled in the future.

The [MixOperation] rule combines the dispense rules for
two solution, v; and v,, and adds a new solution, v to the
program set and the parent solutions have their volumes
reduced accordingly.

Additionally, the solutes in the new solution v will have
a new concentration, based on their initial concentrations
from the parent solution and a dilution factor, q, based on
the final volume.

_ V})arent

©)

Vtotal
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Where Vygren: is the volume dispensed from the parent
solution and V;,;4; is the total volume of the new solution,
v'. The new solution concatenates the solutes, solutes’ re-
spective concentrations (adjust with dilution factor) and the
solvents from the parent solutions.

Where A is a solute, that is either a peptide or molecule
and C is their respective concentrations.

VI = <A=A1 ZZA2,

Solv’ = Solv; :: Solv,,

C= qu o qCZ,

T (10)

V =vol; +voly,

The [MixOperationAllSolution1], [MixOperationAllSolu-
tion2], [MixOperationAll] rules describe the scenario where
all of v; is dispensed, all of v, is dispensed, and all of both
solutions are dispensed, respectively.

The [CallProtocol] rule describes calling a previously de-
fined protocol. This follows call-by-reference semantics and
every protocol must have an explicit return statement (but
this might be the void solution). A protocol has a set of
params, and a sub program, Pr. When called with a set of
arguments, we map these into the existing program state
by creating references, i.e. p — a means to create an refer-
ence/alias that allows p to be used in place of a. This creates
a new state, S*. The protocol (sub-program) runs until it hits
a Return statement and this is added back to the program
state. Since we only support call-by-reference, the remaining
program continues with state S rather than any protocol-
modified state S”, i.e. protocol specific solutions etc. do not
escape the protocol scope.

The program halts when an attempt is made to execute a
program that does not conform to the semantic rules.

6 Extending TideScript to Support Solid
Phase Peptide Synthesis (SPPS)

The existing version of TideScript is expressive enough to
handle in-solution peptide modifications. To support solid
phase peptide synthesis, we introduce additional language
constructs.
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[DispenseOperation]

veSol vy >n

Nicholas Morris, Blair Archibald, and S. Hessam M. Mehr

[DispenseAllOperation]

veSol vypr=n

(Dispense vn :: P,S) — (P,S(v(vol — n)v' (vol = n) U Sol)

[AgitateOperation]
v € Sol
(Agitate v :: P,5) — (P, S(V(Vagitate = _‘Vagitate) U Sol)

[MixOperation)]

V1, V2 € Sol

vol,; > voll

(Dispense vn :: P,S) — (P,S(v")(vol = n) € Sol,v ¢ Sol)))

[ChangeTempOperation)|
v € Sol

(ChangeTemp vton : P,S)y — (P,S(v(temp = n) U Sol))

vol,, > vol2 Vv ¢ Sol

(V' = mix v; voly nuy vol, :: P,S) — (P, S(V' (vol = vol; + voly), vi(vol — voly), vo(vol — voly) U Sol))

[MixOperationAllSolution1]

vy, Vo € Sol

vol,; =voll wol,, > vol2 v ¢ Sol

(V' = mix v; voly nuy vol, :: P,S) — (P,S(v' (vol = vol; +vol,), nuy(vol — voly) U Sol))

[MixOperationAllSolution2]

V1, Vo € Sol

vol,; > voll wol,, =vol2 v ¢ Sol

(V' = mix vy vol; nuy voly :: P, Sy — (P, S(v' (vol = vol; + voly), nuy (vol — vol;) U Sol))

vol,, = vol2

v ¢ Sol

vy, v € Sol  wol,; =voll
[MixOperationAll] L2 i
[CallProtocol]
v = (prmy,..., prmp, Pr) € Prot parrrzg:';rrﬁf;s

S =S U (prmg — argg, ..

(V' = mix vy voly nuy vol, :: P, Sy — (P, S(v'(vol = voly +voly) U Sol))

., prmp v arg,)  {(Pr,S'y — (Returnt,S")

(r=_Callv(argy...argy) :: P,Sy > (P,SUr)

Figure 6. Small-step operational semantic rules for operation statements in TideScript.

6.1 Resins

In SPPS peptides are assembled on a solid support that retains
the growing peptide chain as side products and unreacted
materials are washed away. As a central concept, we add
these as a new type of entity within our language (alongside
the usual peptides, molecules, solvents and solutions).

Resins have a loading value, in mmol/g to describe the
number of active sites, that allow binding to a peptide chain,
per gram of resin material. Each resin therefore tracks a mass
in g, a loading value in mmol/g, and an associated peptide
chain.

6.1.1 Reaction Vessels. In TideScript, solutions, and
only solutions, are assumed to map to a physical location,
e.g. a vessel, DMF cell etc. In SPPS, solutions are always ex-
plicitly added and drained in reaction vessels (RVs), with
the growing the peptide chain linked to the resin. Therefore,
it is necessary to instantiate an RV to perform SPPS opera-
tions. An RV will have a resin, and a set of (possibly empty)
solutions associated with it.
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6.1.2 Amino Acid Solutions. In SPPS, coupling cycles are
defined in order to couple each amino acid in the sequence.
The coupling cycle is often the same, but will call just a
different amino acid building block solution. Users may want
to iterate through a peptide sequence, e.g. MKLWGSAPFT,
performing the same coupling cycle. In order to do this,
solutions need to be associated with the amino acid building
block they contain, denoted by their corresponding one letter
code. Declaring an amino acid solution (aa_solution) is the
same as a regular solution, except there is inclusion of the
one letter code.

1 solution ala_solution =[ala(@.14 M) in DMF, A]

Users can then call the for sequence construct, to iterate
through a sequence and call a protocol, using the appropriate
amino acid solutions each time.

1 forSequence MKLWGSAPFT {
2 call coupling_cycle(rv aa_solution)

3 3
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6.1.3 Repetition Statements. SPPS also involves many
repeated steps in cycles, thus it is useful to introduce repeti-
tion to the language, where a user declares a statement is to
be executed multiple times.

6.2 Additional Syntax for SPPS

Figure 7 outlines the additional syntax required to encode
SPSS. This is an extension of the original abstract syntax, i.e.
Declarations include solutes, peptides etc. and new declara-
tions. Additional declaration statements allow instantiating
resins and RVs, and new operations include adding and drain-
ing solutions from RVs, and agitating RVs (which is used to
react the solution to cause binding). When an RV is instanti-
ated its solvent set is empty.

There are also constructs for declaring amino acid solu-
tions, with a corresponding one letter code, aa. There are
only 20 naturally occurring amino acids, not one for each
letter in the alphabet, but there is scope for the user to in-
clude non-standard amino acid building blocks. There is also
the ForSequence construct. Note (Sequence) was defined in
the initial semantics.

<Declaration>:= <Resin> | <RV> | <AASolution>

<Resin> == resin v(<Mass> <Loading> vjepride)
<RV> = RV vV Vresin

<AASolution> := solution v = [ w(<conc>) 1% v;
<vol> <AA>

<Mass> := <float> <MassUnit>

<MassUnit> == g | mg | pg

<Loading> := <float> mmol/g

<AA> = [A-Z]

<Operation> ::= <AddSolutiontoRV> | <DrainRV> |
<AgitateRV>

<AddSolutiontoRV> := add vso1y7i0n (<VO1>) to vy,
<AgitateRV> == agitate v

<DrainRv> := drain v

<Repetition> := <Statement> * <int>

Figure 7. Extended syntax required to incorporate SPPS into
TideScript. Keywords are highlighted in bold, units in blue
and identifiers in green.

6.3 Semantics

The program state now includes a set of resins, Resin, a set
of RVs, RV, and a set of amino acid solutions, Sol,,.

resin € Resin (a resin within the state set )
ro € RV (an RV within a set)

solyq € Sol,,

(11)
(12)
(an amino acid solution within a set) (13)

The [ResinDeclaration] rule declares a resin, with an iden-
tifier, v, a mass, loading value and peptide chain. The declared
resin is added to the program state and the peptide chain,
Vpep must previously be declared in the program.

The [RVDeclaration] rule declares an RV with identifier
v, containing a previously declared resin, vyesin-
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The [AgitateRV] rules toggles the agitation state of the rv
with identifier v.

The [AASolutionDeclaration] rule describes the declara-
tion of an amino acid solution, it is the same as a [Solution-
Declaration] except it must not be part of the amino acid
solution set (Sol,a) and has a corresponding one letter code,
denoted aa.

The [AddSolutiontoRV] dispenses a volume n, from solu-
tion v,o;, where the volume of the solution is greater than
the dispensing volume. The program state is updated so
the dispensed solution, v;ol is part of the union of solutions
within the rv, Sol,v, and the volume of the parent solution is
reduced by n.

The [AddAllSoltutionToRV] occurs when all of the solu-
tion is added to the rv. In this case the original solution is
removed from the program state.

The [DrainRV] rule drains all solutions from the rv, the
set of solutions within the rv, Sol,u is now nil and they are
removed from the program state.

The [Repetition] rule allows an operation statement to
be executed multiple times. The Operation statement (and
this only makes sense for operations and not, for example,
declarations), O, is executed n times; where n is a natural
number and is greater than zero. This is essentially a program
transform (and could be implemented as such) but as we have
not defined other transforms we choose to express it as an
operational rule here.

The [ForSequence] rule iterates through each one letter
code in the passed-in sequence, and call the passed in proto-
col with each corresponding amino acid solution.

7 Expressivity
7.1 Expression of Real-World Literature Procedures

To show TideScript is capable of modelling realistic pro-
tocols, we show how to encode 2 further existing, textu-
ally defined, protocols, in addition to the conjugation proce-
dure outlined in figure 1. We use these protocols to compare
TideScript with other chemical programming languages.

7.1.1 Peptide Sequence Assembly. Peptide assembly us-
ing SPPS utilises successive coupling for each amino acid
in the desired sequence. These coupling cycles can further
be broken down into deprotection and coupling cycles (see
figure 3).

A specific Fmoc deprotection (removal) cycle, and an amino
acid coupling cycle are described in [30], outlined in figure
9.

We now express this in TideScript. We first declare the
materials used in the experiment (using our declaration op-
erations): the reaction vessels (and the nature of the resin
contained within) and the solutions (including their concen-
trations).

This protocol uses reaction vessels with 100 mgs of No-
vaSyn TGT resin, preloaded (at 0.2 mmol/g) with a protected
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[ResinDeclaration] [RVDeclaration]
v ¢ Resin  Vpep € Pep V& RV Vyesin € Resin
(resin v (mass, Vpep, loading) :: P,S) — (P,vU S) (ro v(Vyesin) : P,S) = (P,vUS)
[AgitateRV] [DrainRV]
v € RV v(agitate) = false vERV
(Agitate v :: P,S) — (P, v(agitate—agiraze) U S) (drainv :: P,S) — (P,v(Sol,, =€) US)

vy & Solaq v, € S(Pep,Mol) vs € S(solon)
(solution vy [vy, conc]* v; Vol,aa :: P,S) — (P,5(v; U Sol))

[AASolutionDeclaration]

Vsol, Vro € SOLRV  vgo1(vol > n)
{add vso1 1 Vry 2 P, S) — (P, Vso1(v0l = 1), Vry (Vo1 U Sol,,) U'S)

[AddSolutionToRV]

Vsol, Vro € SOLLRV  vso1(vol = n)

AddAllSolutionToRV.
L orton e ]<add Vsol I Vrg 2 P, S) — (P, S(vsor & Sol, vry(Vsor U Solyy) U 'S)

. . Oisasingle operation neN n>0
[Repetition]

<O*n::P,S>—> <O::~~- ::O::P,S)
~—— —
n times

[ ForSequence] Vprot € Prot  Sequence = (aay...aan € Solyq)

1 (forSequence < aay, ...aan > Vprot i P,S) — (Call vpro(aag) :: ... :: Call vprot(aay) = P, S)

Figure 8. Semantic rules to extend TideScript to incorporate the expression of solid phase peptide synthesis (SPPS).

“The reaction syringe containing N-terminal Fmoc- “The reaction syringe was added Fmoc-protected amino
protected peptide was added piperidine in DMF (40% v/v, acid (0.600 ml, 0.140 M in DMF, 4 eq.), HBTU (0.600 ml,
1.5 ml). The mixture was agitated for 20 s every min for 0.140 M in DMF, 4 eq.), and DIPEA (0.300 ml, 0.560 M in
a total of 3 min. The reagents were removed by filtration DMF, 8 eq.). The mixture was agitated for 20 s every 3
under vacuum, and the resin washed with DMF (4 1.5 ml). min for a total of 40 min. The reagents were removed by
Piperidine in DMF solution (40% v/v, 0.75 ml) was added filtration under vacuum, and the resin washed with DMF
to the reaction syringe followed by DMF (0.75 ml) to make (4 1.5 ml)”

an overall 20% v/v solution of piperidine in DMF. This
mixture was agitated for 20 s every min for a total of 10

»

min.
Figure 9. The literature protocol from reference [30], describing the deprotection cycle (left) and the coupling cycle (right).

amino acid: Asp (single letter code D). In TideScript, we Note here we import a library of standard amino acid
instantiate a peptide with the single amino acid to include solutions.

in the resin declaration: 1 import standard_aa_solutions(0.14 M)

2 solvent dmf;

1 peptide pre_load = <D>

2 resin resin_1 = {100 mg, 0.2 mmol/g, pre_load} 4 molecule piperidine = (C5HITN);

5 solution deblock = [piperidine(0.14 M) in dmf];

3rv rv_l = {resin_1} 6
7 molecule hbtu = (C1THT16F6N50P);
We then declare the rest of the molecules and solvents 8 solution hbtu_sol = [hbtu(@.14 M) in dmfl;
involved in the experiment. Then we instantiate the solutions ? )
a ) . R 10 molecule dipea = (C8H19N);
containing them with appropriate concentrations (e.g. 0.14 11 solution dipea_sol = [dipeal[0.56 M] in dmfl;
M).
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1

2 protocol<void> dmf_wash (rv){
3 add dmf (1.5 mL) to rv;

4 drain rv

5%

6

7

protocol<void> shake_rv (rv){
agitate rv;

o

9 wait 20s;
10 agitate rv;
11 wait 40s

12 3}

13
14
15
16
17
18
19 3}
20
21
22
2
24
25
26
27
28

protocol<void> shake_rv_3min (rv){
agitate rv
wait 20 s;
agitate rv;
wait 160 s

protocol<void> deprotection (rv){
add deblock (1.5 mL) to rv;
call shake_rv (rv) * 3;
drain rv;
call dmf_wash (rv) * 4;
add deblock(0.75 mL) to rv;
add dmf(0.75 mL) to rv;
call shake_rv (rv) * 10;

29 drain rv;

30 )

31

32 protocol aa_coupling (rv aa_solution){
33 add aa_solution(4 eq) to rv(l eq);
34 add hbtu(4 eq) to rv(l eq) +

35 add dipea (8 eq) to rv(1 eq);

36 call shake_rv_3min (rv) =* 13;

37 drain rv;

38 call dmf_wash_rv (rv) x 4;

39 }

40
41
42
43
44}
45
46

protocol<void> coupling_cycle (rv aa_solution){
call deprotection (rv);
call aa_coupling (rv aa_solution);

protocol spps (rv sequence){
for sequence {
48 rv = coupling_cycle aa_solution
49 3
50 }
51

52 call spps (rv_1 SADCLKSCLRMCPD);

Figure 10. TideScript code for expressing the SPPS protocols
from the published literature descriptions from Figure 9.

We then utilise the protocol definition functionality. Pro-
tocols can be used to define washing, deprotection and cou-
pling. These protocols can then be combined into a single
coupling cycle, for each amino acid to be coupled.

Finally, we pass in a peptide sequence to a defined pro-
tocol, in order to iterate through each amino acid sequence
and carry out the coupling cycles. This script is outlined in
figure 10.

7.1.2 Peptide Cleavage. The peptide cleavage procedure
from reference [30] is outlined in figure 11.

The cleavage cocktail uses a combination of compounds
that are liquid at room temperature, so the cocktail is de-
scribed as these compounds being combined at a specific
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ratio. The TideScript language constructs allows the user
to declare a solution as simply being a neat liquid of a de-
clared molecule. A new solution can then be declared by
mixing them. These molecules can be thought of as being
dissolved compounds at specific concentrations. The script
expressing this procedure is outlined in figure 12.

“The resin was washed with CH2CI2 (3 3 ml), MeOH (3 3
ml) and Et20 (3 3 ml) and dried (desiccator) followed by
adding TFA/EDT/ H20/TIPS (88:5:4:2; 3 ml) to the
reaction syringe. The syringe was then agitated for 3 h at
RT. The cleavage cocktail was drained from the vessel
under vacuum and Et20 ( 10-15 ml) added to the filtrate.
The resultant precipitate in solution was stored at 20 C
for 30 min prior to being spun at 4000 rpm for 10 min at
4 C to produce a crude peptide pellet. The supernatant
Et20 was decanted off, and the peptide washed a further
three times with Et20. The crude peptide pellet was then
re-dissolved in minimum water and freeze-dried for
storage prior to purification”

Figure 11. Cleavage procedure described in reference [30].

This TideScript protocol expresses the main elements of
the cleavage procedure from figure 11, however it does not
capture steps such as freeze-drying as these are primarily
manual steps not supported in the language.

7.2 Limitations of Expressivity in TideScript

TideScript is designed to express common protocol ele-
ments from peptide chemistry: movement, mixing, agitation,
heating etc. We have shown it to cover solid phase peptide as-
sembly, most of peptide cleavage and conjugation in sections
1,7.1.1 and 7.1.2. However, as demonstrated in section 7.1.2,
protocols sometimes contain special instructions such as
freeze-drying, filtering under vacuum or using a centrifuge.
These currently require manual intervention as automatic
lab hardware is unlikely to support all of these features.

In future, we plan to introduce additional language con-
structs to allow these features, where, although not fully
automated, the user can specify the semantic outcome of an
operation (e.g. whether a peptide is “used-up” after a step).
This will allow protocols to be more complete and also sup-
port strong reasoning. For example, manual process blocks
could be specified for vacuum filtration:

1 filtrate = manual "vacuum filter"

2 outcome (del peptide p; return peptide "..." )

To keep the language contained, and ensure full control
over the semantics, we do not add this to the first version
of TideScript. Many languages include ’escape hatches’,
which allow users to escape an abstraction layer to reach a
lower level [7]. Examples include the Java unsafe API [22],
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solvent dcm;

solvent methanol;
solvent ether;

molecule
solution

ECINC NS TR C R

tfa = (C2HF302);
tfa_sol = neat(tfa);

o

molecule
solution

edt = (C2H4S2H2);
10 edt_sol = neat(edt);
11
12
13
14
15
16
17
18

molecule
solution

water = (H20);
water_sol = neat(water);

molecule
solution

TIPS = ([(CH3)2CHI3SiH);

TIPS_sol = neat(TIPS);

solution cleavage_cocktail = [tfa(88%) + edt (5%) +
water (4%) + TIPS(2%) 1;

19

2

21

22

23 }

24

25 protocol<void> final_wash (rv){

26 call wash (rv dcm);

27 call wash (rv methanol);

28 call wash (rv ether);

29 drain rv;

30 }

S

protocol<void> wash (rv solution){
add solution to rv;
drain rv;

call final_wash (rv_1);

protocol<void> cleave (rv){

add cleavage_cocktail to rv;
36 agitate rv;
wait 3 hours;

38 }

call cleave(rv_1);

Figure 12. TideScript script for expressing the cleavage
procedure from figure 11.

and the use of inline assembly in C/C++ [21]. We can employ
a similar concept here, allowing us to manually perform spe-
cialised actions not yet covered by the language/hardware.

In general, the question of whether a language can capture
all of (peptide) chemistry is an interesting one: is there an
equivalent to a Turing machine/Turing completeness for
chemistry/chemical languages, and is there a hierarchy of
chemical language power.

Luca Cardelli discusses how language design choices can
require bottom-up design of hardware [6]. This would allow
new language constructs to guide future hardware design (a
step change from classic computation). While many pieces
of lab equipment are computer controlled, automating their
integration still remains challenging [6].

This bottom-up design of hardware has been demonstrated
by the Cronin group, and the development of their ‘Chem-
puter’ platforms, targeted with their yDL language. They
have integrated systems of pumps, valves, and flasks to carry
out automated chemistry. With language constructs that de-
scribe hardware components, and describe operations such
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as stirring, heating, and moving reagents between said hard-
ware components. We discuss yDL in more detail in section
8.1.

Some examples of the challenges of expressing peptide
protocols in TideScript, and constructs that would need to
be introduced are outlined below.

7.2.1 Performing Reactions in a Vacuum or Under In-
ert Atmosphere. Many chemical reactions, including some
performed in peptide synthesis, require an inert atmosphere
in TideScript, typically achieved through an atmosphere
of nitrogen or argon, or performing the reaction in a vac-
uum. This is often required as oxygen, or water molecules
present in atmospheric air, can interfere or kill certain re-
actions [24]. There is not currently a notion of atmosphere.
If special atmospheres are to be incorporated, semantically
they may need to be tracked in the program state. For ex-
ample, "the current atmosphere = 100% Nitrogen", and there
may be purging operation steps that alter this state. The
integration of atmosphere tracking in TideScript would
greatly expand its expressiveness.

Hardware interfaces to carry this out have already been
developed. The Cronin group have developed the "Schlenk-
puter"” to carry out such reactions [4]. "Schlenk" here refers to
specialist type of glassware used to facilitate inert reactions.
The yDL language has constructs for describing the schlenk
hardware, as well as evacuateandrefill and purge steps [14].

7.2.2 Performing Reactions at Extreme Temperatures.
Similarly, some reactions are required to be performed at
very high or very low temperatures. While there is a con-
struct for changing temperature in TideScript, semanti-
cally, temperature change is an assignment, and the actual
temperature change is less controlled and deterministic than
that. A construct for some hardware feedback to confirm
desired temperatures before proceeding may be required,
and specialist hardware is needed for anything beyond mild
heating or cooling. TideScript could benefit from feedback
based control, and mechanisms that can manage the differ-
ence between real world value and the semantic modelling
if they de-sync.

7.2.3 Gas-Phase Reactions. TideScript has constructs
for solid and solution phase reactions, but sometimes gaseous
compounds are used in chemical synthesis [3]. Constructs
for gaseous reagents will need to be incorporated in order
to express and execute these protocols. This also ties in with
the notion of atmosphere mentioned earlier.

7.2.4 Purifications. We have also not addressed purifica-
tions in this work. There are many purification techniques in
chemistry but peptide products are most commonly purified
by reversed phase HPLC [9]. The details of HPLC are beyond
the scope of this paper, but there exist many instruments to
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automate this process. Nevertheless, expression of purifica-
tion protocols would aid in the development of integrated
and reproducible workflows.

8 (Bio)Chemistry Protocol Languages
8.1 yDL

xDL is chemical programming language, for automating
general synthetic chemistry protocols. The researchers have
developed a Chemputer architecture, which is a modular
robotic platform for carrying out operations such as the
reactions, filtration, separation and evaporation [32].

The higher level language compiles down into low-level
instructions for robotic execution. This allows the same syn-
thesis files to operate on different hardware platforms, pro-
viding the necessary resources are present [27, 32].

While the language initially targeted their own Chem-
puter architecture, they have expanded on the compiler to
be hardware-agnostic, and demonstrated the operation of
xDL scripts on different Chemputer platforms, and Open-
Trons robotics [29].

A construct of yDL has been developed, called blueprints.
Reaction blueprints are analogous to functions in traditional
programming languages, similar to protocols in TideScript.
The concept is to allow users to define sets of operation into
irreproducible, parallelised workflows, that can be reused on
different reagents and conditions [39].

8.1.1 Comparing yDLtoTideScript. TideScriptisnot
the first chemical protocol language, although is, to our
knowledge, the first specific to peptide chemistry. yDL is
one of the most developed languages, so here we focus a
comparison on that.

xDL is analogous to a general-purpose programming lan-
guage in the chemistry space and is able to express protocols
from a broad spectrum of chemistry domains rather than just
peptides [17]. The same language can execute on multiple
diverse hardware architectures, including self-optimising
reaction engines [17, 23].

Using XML-style syntax, yDL allows defining a reaction
blueprint for a generic synthesis procedure, e.g. peptide con-
jugation, including equivalent amounts for any reagents used.
Both specific and generic/placeholder hardware and reagents
can be declared. The reaction blueprint can be called multiple
times at different scales by passing in the specific reagents
to be used, hardware, parameters (duration, temperature),
along with the overall reaction scale.

TideScript instead focuses on the sub-domain of peptide
chemistry, and is optimised for succinct expression of pep-
tide protocols. We take a more declarative approach, where
peptide operations produce peptides that can be located
physically at a later point. In contrast, yDL’s uses a direct
treatment of reactors that is reminiscent of C-style explicit
memory management.
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The domain specific nature of TideScript allows it to
be more concise when expressing peptide protocols. For
example the when expressing a protocol for conjugation,
TideScript required 13 lines of code (figure 1) versus yDLs
47 (figure 13B). This is mainly due to the XML syntax, addi-
tional component declarations, and declaring specific hard-
ware locations; these provide flexibility but are not necessar-
ily required for peptide only chemistry.

As TideScript works in a more constrained domain, it
can track specific values, e.g. since it distinguishes peptides
from solvents, properties such as molecular weight, or amino
acid sequences can be tracked and inferred. This information
could be propagated into a strong future type system to
detect poorly formed peptide protocols. One option might be
tracking the binding points of specific peptides to ensure a
conjugation is possible, e.g. there is an unprotected cysteine
residue.

Although a formal mapping from TideScript to yDL
steps has not yet been implemented, this type of mapping
should be possible in principle, and could allow yDL to be
used as a back-end for TideScript to target execution on
Chemputer platform.

8.2 BioScript

Digital microfluidic boards (DMFBs) are a technology that
utilises electrowetting for liquid handling. Sequential activa-
tion of electrodes manipulates fluids, and discrete droplets
can be dispensed, mixed, moved and split. Each droplet in-
stance acts as a reservoir for an individual chemical pro-
cess, and they allow for small scale automation of biolog-
ical and chemical procedures. DMFBs have already seen
application in some automated analytical chemistry and bio-
analysis [26].

Many programmable DMF devices have been developed,
including OpenDrop [1], Dropbot [12], among others [38].
While there are differences, their application is broadly simi-
lar, in that the firmware can interpret inputs (usually in the
form of bytes arrays) and execute instructions.

Bioscript is a DSL developed for targeting DMFBs, with
an aim to provide a language accessible to life science re-
searchers without programming experience. The compiler
employs operation scheduling, module placement and rout-
ing of droplets. The scheduler determines the timing of each
operation, while considering the resource constraints of the
device. Bioscript also introduces a bespoke type-checker
that addresses the unique challenges of biochemical oper-
ations. The type system cross-references databases from
the Environmental Protection Agency (EPA) and the Na-
tional Oceanic and Atmospheric Administration (NOAA),
which categorises 9’800 chemicals into 68 reactivity groups.
Many substances will contain multiple functional groups,
so a union type is associated with each material. Reactions
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between certain functional groups can produce other func-
tional groups, so reaction outcomes are calculated in a table,
and unsafe reactions can be prevented [26].

8.2.1 Comparing TideScript with BioScript. BioScript
has the most concise expression of the conjugation protocol
from reference [30] (see figure 13), compared to TideScript
(see reference 1), but unlike yDL and TideScript, it is not
hardware agnostic and only targets digital microfluidic boards.
Due to nature of the hardware, it can only be used for analyt-
ical experiments, and cannot be used to synthesis materials
of appreciable quantity [26].

While it can define functions that are compiled to DMF
boards, and even supports recursion, they cannot be called
at different scales [18].

If a back-end targeting DMFBs was developed for TideScript,

then the ability to express protocols in both TideScript and
BioScript would be broadly similar. BioScript has a rich type
system for preventing mixing of unsafe chemicals. This is for
general chemistry, but such a typing system could be of great
benefit to TideScript and peptide chemistry as well. A type
system like this could improve safety of procedures, particu-
larly if we move towards autonomous systems. TideScript
however, has scope for better capturing the peptide-specific
domain and its unique challenges.

8.2.2 Modelling of Biochemistry Protocols. Luca Cardelli
et al developed a language for modelling and optimising ex-
perimental biological protocols. The aim of this research
was to pair computational modelling with of the underly-
ing system, with the laboratory protocol execution, in an
integrated description. This integration allows models to be
formally verified and falsified by taking into account equip-
ment tolerances, and uncertainties in model parameters and
data collection [6].

The language incorporated the use of probabilistic seman-
tics, in which uncertainties are characterised by a Gaussian
process, using a linear noise approximation. The language
primarily models how the respective concentration of species
in a chemical reaction network change over time, with tem-
perature and time being parameters to optimise for [6].

Researchers validated their model through simulations
of two common biological protocols: Gibson Assembly, for
joining strands of DNA, and split and mix protocols for liquid
handling [6]. We discuss the stochasticity of chemistry and
how it pertains toTideScript in section 9.2

9 Discussion

TideScript aims to provide a DSL for synthesis protocols fo-
cused on the sub-domain of peptide synthesis. TideScript’s
primary research goals are to explore whether targeting a
narrower domain in a protocol language unlocks more pow-
erful analyses, and to provide an expressive and accessible
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manifest peptide
manifest mol_17

step_1 = mix
peptide with
mol_17

I N I N

o

heat step_1 at 21C for 3h

(A)

1 <Synthesis>

2 <Hardware>

3 <Component
4 id="reactor" type="reactor"/>
5 </Hardware>

7 <Reagents>

8 <Reagent

9 name = "SAD(acm)LKSC(acm)LRMCPDRII"
10 molecular_weight = "1888.14 g/mol"
11 concentration = "0.00106 M"/>

12

13 <Reagent

14 name = "molecule_17"

15 molecular_weight = "457.5 g/mol"

16 concentration = "0.00287 M"/>

17 </Reagents>

19 <Procedure>

20 <Conjugation
21 reactor = "reactor"
22 peptide = "SAD(acm)LKSC(acm)LRMCPDRI"
23 maleimide = "molecule_17"
24 time = "3h"
25 equiv_amount = "1 mmol"/>
26
27 <Conjugation
28 reactor = "reactor"

peptide ="SAD(acm)LKSC(acm)LRMCPDRI"
30 maleimide = "molecule_17"
31 time = "3h"
32 equiv_amount = "1@ mmol"/>
33
34 <Conjugation
35 reactor = "reactor"
36 peptide = "SAD(acm)LKSC(acm)LRMCPDRI"
37 maleimide = "molecule_17"
38 time = "3h"
39 equiv_amount = "100 mmol"/>
40 </Procedure>
41 </Synthesis>

(B)

Figure 13. Comparison of the thiol-maleimide procedure
from reference [30] expressed in Bioscript (A) and yDL (B).
Full code for the yDL script found in appendix 1.

syntax and semantics tailored to domain experts without pro-
gramming experience. While gaps exist in the range of syn-
thesis protocols that can be automated using TideScript,
we have shown strong coverage of protocols in its target
domain, particularly SPPS and solution-phase reactions.

9.1 Why Not Just a Library?

We developed TideScript as a stand-alone DSL rather than
implementing it as a library within an existing language, i.e.
an embedded DSL. This choice provides the flexibility to con-
trol the syntax and semantics: Deeply embedding peptides
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as a first-class language construct. Introducing peptides as a
specific compiler-aware type enables future analyses, such
as determining when two operations are chemically equiva-
lent and performing program rewriting (more difficult with
library calls). It also ensures that the language is accessible
to chemists with limited programming experience.

Given the differences in hardware, it remains unclear
which standard computational elements should be supported:
expressions that can be constant folded are likely okay, but
it is unclear how to mix computational variables, and chemi-
cal variables; how function calls should work on non stack-
based architectures; and how existing exception handling
paradigms can be mapped to this new domain. There is
likely limited reuse of existing compiler optimisation pos-
sible. With TideScript being relatively simple compared
to full programming languages, implementing the toolchain
from scratch will likely be less onerous. DSLs have been
shown to optimisation for heterogenous CPU/GPU architec-
tures than native libraries [31], and as laboratory hardware is
highly heterogenous we believe the improved optimisations?
to be beneficial here.

An example of a protocol language implemented as a li-
brary is Biocoder: a language for modelling biological pro-
tocols distributed as a C++ library. The authors’ rationale
for choosing a library rather than stand-alone DSL was to
avoid life scientists learning a completely new language. We
take the view that end users not proficient in programming
languages will still face a barrier using a conventional pro-
gramming language like C++ [2].

Exploring the implementation details of protocol languages
is an interesting area of future research. Some of the principal
questions include whether an embedded DSL — whether as
a library or taking advantage of meta-programming — is suf-
ficient; or whether the hardware and abstraction differences
require developing entirely bespoke language toolchains.

9.2 Chemistry as a Stochastic Process

TideScript is symbolic in nature: specifying precisely what
steps a protocol should take. It does not contain a model of
the underlying chemistry which is a inherently stochastic
process: when two chemicals mix the outcome is not fully
determined as, for example, small environment changes af-
fect the yield of the produced chemical. The semantics cur-
rently do not model the underlying chemistry, hence they
do not model the stochasticity. Without a chemical model,
TideScript (and other protocol languages) are still useful
in formally specifying the general structure of protocols and

2An interesting question, not discussed here, is specifically what chemical
hardware should be optimised for. Reactions are generally long running,
and so unlike for computational workloads, time is not a key metric. Instead
we could consider optimising for chemical purity, reduced waste, less clean
up etc.
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leading the way to automation. Existing, hand-written, pro-
tocols are also symbolic, but are of course fundamental to
sharing chemical knowledge.

One of the main benefits of the formalised protocols is
that it paves the way in future to start asking questions at
the intersection of symbolic process models and underly-
ing chemistry. As outlined in Cardelli’s work, discussed in
section 8.2.2. Such an approach could be integrated within
TideScript, again the reduction to peptide only chemistry
narrowing the amount of chemical modelling needed.

As the outcomes are probabilistic in nature, another inter-
esting question is whether probabilistic programming can
capture notions of chemistry in a principled way, e.g. using
Gaussian processes to model the random variance.

From a runtime perspective, TideScript currently does
not have a feedback system. For example, we cannot express
“stir until molecule is observed”. In practice the feedback
possible is highly intertwined with the hardware, e.g. is NMR
available’.

There could be multiple ways to integrate feedback into
TideScript: a simple approach is to add conditional state-
ments with the caveat that these might not work on all
hardware. It should also be possible to implement feedback
as an exception style system, e.g. for each mix etc. determine
if suitable bounds were met and if not allow the system to re-
spond. A disadvantage of this is the lack of sequential control
flow (that chemists are familiar with), but it would allow time
savings if earlier parts of a protocol could be automatically
reused without starting the entire protocol again.

Additional stochasticity comes from the conformance of
the equipment (how closely a systems behaviour matches
pre-defined models, e.g. if we request 20 degrees how close
do we actually get).

Probabilistic conformance of cyber-physical systems has
been studied, defined by specifications of signal temporal
logic (STL), to study powertrain systems, lane-keeping con-
trollers, and power grid systems [36]. There is always a ten-
sion between control algorithms and the phenomena they
control.

10 Conclusions and Future Work

We have presented the design of TideScript, a novel domain-
specific language for expressing peptide synthesis protocols.

TideScript is designed to be accessible to chemists while

providing well defined syntax and semantics to allow future

strong reasoning. Other than BioScript, a language specific

to digital microfluidic platforms, there is limited rigorous

programming language design applied to chemical protocol

languages; we believe our contribution is a step towards

wider application of programming to chemistry protocols.

3NMR is an analytical technique in chemistry that can be used to identify
chemical compounds.
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We show that TideScript is useful by encoding several
realistic peptide protocols from the literature and comparing
TideScript with other chemical programming languages:
xDL and BioScript.

A core feature of TideScript is to remain hardware-
agnostic and instead specify core operations, including move-
ment, mixing, agitating and heating of peptides. Future work
will aim to map these operations to specific hardware; for
example, agitation could be provided by a magnetic stirrer
or a microwave depending on the specific setup. While the
basic TideScript is limited to manipulation of peptides in
solution, through a small extension—requiring only 4 new
constructs and 9 new semantic rules—it can express solid
phase peptide synthesis.

While TideScript currently only provides formal specifi-
cation of protocol operations, for future work we will create a
compiler—a prototype version is available *—to target chemi-
cal hardware. This will start with digital microfluidics, which
are suitable for in-solution peptide chemistry, to execute real
world experiments. We aim to maintain modularity to allow
the possibility to develop back-ends for other hardware like
the Chemputer.

An open question is how to take advantage of sensor input
at runtime, including developing runtime systems that can
respond to analytical data, with the goal of moving towards
autonomous cyber-physical systems. This modelling can
be paired with models of underlying chemistry, e.g. using
probabilistic semantics [6].

At the language level, there is untapped potential for ex-
ploring the role of type systems to express chemical safety
and reliability, as well as avoiding common errors. We hope
that deploying this type of analysis more widely can lead to
pro-active experimental decisions that can both increase ex-
perimental success rates and aid in designing more efficient
protocols.
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